删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Gradient-Enhanced Softmax for Face Recognition

本站小编 Free考研/2020-05-25


Author(s): Sun, LJ (Sun, Linjun); Li, WJ (Li, Weijun); Ning, X (Ning, Xin); Zhang, LP (Zhang, Liping); Dong, XL (Dong, Xiaoli); He, W (He, Wei)
Source: IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS Volume: E103D Issue: 5 Pages: 1185-1189 DOI: 10.1587/transinf.2019EDL8103 Published: MAY 2020
Abstract: This letter proposes a gradient-enhanced softmax supervisor for face recognition (FR) based on a deep convolutional neural network (DCNN). The proposed supervisor conducts the constant-normalized cosine to obtain the score for each class using a combination of the intra-class score and the soft maximum of the inter-class scores as the objective function. This mitigates the vanishing gradient problem in the conventional softmax classifier. The experiments on the public Labeled Faces in the Wild (LFW) database denote that the proposed supervisor achieves better results when compared with those achieved using the current state-of-the-art softmax-based approaches for FR.
Accession Number: WOS:000530668200032
ISSN: 1745-1361
Full Text: https://www.jstage.jst.go.jp/article/transinf/E103.D/5/E103.D_2019EDL8103/_article
相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19