删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Enhance decoding of pre-movement EEG patterns for brain-computer interfaces

本站小编 Free考研/2020-05-25


Author(s): Wang, K (Wang, Kun); Xu, MP (Xu, Minpeng); Wang, YJ (Wang, Yijun); Zhang, SS (Zhang, Shanshan); Chen, L (Chen, Long); Ming, D (Ming, Dong)
Source: JOURNAL OF NEURAL ENGINEERING Volume: 17 Issue: 1 Article Number: 016033 DOI: 10.1088/1741-2552/ab598f Published: FEB 2020
Abstract: Objective. In recent years, brain-computer interface (BCI) systems based on electroencephalography (EEG) have developed rapidly. However, the decoding of voluntary finger pre-movements from EEG is still a challenge for BCIs. This study aimed to analyze the pre-movement EEG features in time and frequency domains and design an efficient method to decode the movement-related patterns. Approach. In this study, we first investigated the EEG features induced by the intention of left and right finger movements. Specifically, the movement-related cortical potential (MRCP) and event-related desynchronization (ERD) features were extracted using discriminative canonical pattern matching (DCPM) and common spatial patterns (CSP), respectively. Then, the two types of features were classified by two fisher discriminant analysis (FDA) classifiers, respectively. Their decision values were further assembled to facilitate the classification. To verify the validity of the proposed method, a private dataset containing 12 subjects and a public dataset from BCI competition II were used for estimating the classification accuracy. Main results. As a result, for the private dataset, the combination of DCPM and CSP achieved an average accuracy of 80.96%, which was 5.08% higher than the single DCPM method (p < 0.01) and 10.23% higher than the single CSP method (p < 0.01). Notably, the highest accuracy could achieve 91.5% for the combination method. The test accuracy of dataset IV of BCI competition II was 90%, which was equal to the best result in the existing literature. Significance. The results demonstrate the MRCP and ERD features of pre-movements contain significantly discriminative information, which are complementary to each other, and thereby could be well recognized by the proposed combination method of DCPM and CSP. Therefore, this study provides a promising approach for the decoding of pre-movement EEG patterns, which is significant for the development of BCIs.
Accession Number: WOS:000520940200001
PubMed ID: 31747642
ISSN: 1741-2560
eISSN: 1741-2552
Full Text: https://iopscience.iop.org/article/10.1088/1741-2552/ab598f
相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19