删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

【讲座预告】高屋建瓴AI公开课第15期:百度 AIG 计算机视觉首席科学家王井东博士做客开讲

本站小编 Free考研考试/2022-11-27



王井东博士现任百度 AIG 计算机视觉首席科学家。他于2001和2004年分别获得清华大学自动化系学士和硕士学位,于2007年在香港科技大学计算科学与工程系获得博士学位,2007年进入微软亚洲研究院任资深研究员。他与团队的主要研究领域是计算机视觉、深度学习和多模态搜索。
王井东博士曾任IEEE TPAMI,IJCV, IEEE TMM和IEEE TCSVT等多个国际期刊的副编辑,以及CVPR, ICCV, ECCV, ACM MM, IJCAI 和 AAAI等多个计算机视觉、多媒体和人工智能领域国际顶级会议的区域主席。由于在计算机视觉领域所做的杰出贡献,他被选为国际计算机学会杰出会员(ACM Distinguished Member)、美国电气与电子工程师协会(IEEE Fellow),以及国际模式识别协会会士(IAPR Fellow)。代表性成果包括高分辨率深度神经网络(HRNet),判别区域特征融合(DRFI),近邻图搜索方法(NGS, SPTAG)等,在学术和产业界均有很高的贡献和影响力。其中,HRNet一经发布就在COCO数据集的关键点检测、姿态估计、多人姿态估计这三项任务里取得了令人瞩目的成绩,至今依然是此类任务中广泛应用的backbone网络。
王井东博士此次报告的主要内容是自监督表征学习中的基于图像掩码的新型模型,报告也将进一步围绕自监督表征学习中其他有价值的问题展开介绍。


报告题目:Context Autoencoder for Scalable Self-Supervised Representation Pretraining
主讲人:王井东百度AI 计算机视觉首席科学家
邀请人:胡迪 中国人民大学高瓴人工智能学院准聘助理教授
主讲人简介:Jingdong Wang is a Chief Scientist for computer vision with the Artificial Intelligence Group at Baidu. His team is focusing on conducting product-driven and cutting-edge computer vision/deep learning/AI research and developing practical computer vision applications. Before joining Baidu, he was a Senior Principal Researcher at Microsoft Research Asia. His areas of interest are computer vision, deep learning, and multimedia search. His representative works include deep high-resolution network (HRNet), discriminative regional feature integration (DRFI) for supervised saliency detection, neighborhood graph search (NGS, SPTAG) for large scale similarity search. He has been serving/served as an Associate Editor of IEEE TPAMI, IJCV, IEEE TMM, and IEEE TCSVT, and an area chair of leading conferences in vision, multimedia, and AI, such as CVPR, ICCV, ECCV, ACM MM, IJCAI, and AAAI. He was elected as an ACM Distinguished Member, a Fellow of IAPR, and a Fellow of IEEE, for his contributions to visual content understanding and retrieval.
报告摘要:Self-supervised representation pretraining aims to learn an encoder from unlabeled images, such that the encoded representations take on semantics and benefit downstream tasks. In this talk, I present a novel masked image modeling approach, context autoencoder (CAE), for scalable self-supervised representation training. The core ideas include that predictions are made in the latent representation space from visible patches to masked patches and that the encoder is only for representation learning and representation learning is only by the encoder. I also discuss why masked image modeling potentially outperforms contrastive pretraining (e.g., SimCLR, MoCo) and why contrastive learning performs on par with supervised pretraining on ImageNet. In addition, I show that linear probing and the extended version, attentive probing, are more suitable than fine-tuning on ImageNet for pretraining evaluation.


讲座时间:2022年3月18日(周五)15:40-17:00
腾讯会议:610-614-378

扫码报名:





相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19