删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

抗坏血酸对三价铁/过氧化钙体系降解头孢氨苄的影响

本站小编 Free考研考试/2021-12-31

卢建1,,
黄天寅1,
徐劼1,
房聪1,
陈家斌1
1.苏州科技大学环境科学与工程学院,苏州 215009
基金项目: 国家自然科学基金资助项目(51509175)
苏州市民生科技项目(SS201666)
江苏省研究生实践创新计划(SJCX17-0676)




Effect of ascorbic acid on the cefalexin degradation in Fe3+/calcium peroxide system

LU Jian1,,
HUANG Tianyin1,
XU Jie1,
FANG Cong1,
CHEN Jiabin1
1.School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China

-->

摘要
HTML全文
(0)(0)
参考文献(41)
相关文章
施引文献
资源附件(0)
访问统计

摘要:通过添加抗坏血酸(AA)能够缓解铁离子形成沉淀和加速(Fe3+转化为Fe2+,催化CP产生活性氧物质(ROSs),对CFX降解起到促进作用。研究了Fe3+/AA/CP体系降解CFX的Fe3+浓度、AA浓度、CP浓度、初始pH等主要影响因素。结果表明:在Fe3+浓度0.60?mmol·L-1、AA浓度0.15?mmol·L-1、CP浓度0.144?g·L-1、CFX的初始浓度0.15?mmol·L-1和初始pH=3.00的室温条件下,20 min内CFX的降解率可达到100%。随着初始pH升高,CFX的降解率随之降低。反应过程中降解CFX的活性物质为羟基自由基(HO·)和超氧自由基(O2-·),其中HO·对CFX降解起到主导作用。水中阴离子的影响表明,SO42-、Cl-对CFX的降解影响较小;但HCO3-对CFX的降解有明显的抑制作用。在处理成分较复杂的实际养殖废水实验中,发现只有提高药剂量才能达到有效降解实际废水中头孢氨苄的目的。
关键词: 抗坏血酸/
过氧化钙/
头孢氨苄/
活性氧物质/
降解率

Abstract:The addition of ascorbic acid (AA) could alleviate the precipitation of dissolved iron and also accelerate the transformation of Fe3+ to Fe2+, which enhanced the generation of reactive oxygen species (ROSs) and thus promoted the degradation of CFX. In the Fe3+/AA/CP system, effects of various factors were explored, including the Fe3+dosage, contents of AA and CP, and initial pH. The results indicated that 100% degradation occurred for 0.15 mmol·L-1CFX after 20 min treatment by Fe3+/AA/CP system at 0.60 mmol·L-1 Fe3+, 0.15 mmol·L-1 AA, 0.144 g·L-1 CP and pH=3.00. The CFX degradation rate decreased with the increase of initial pH. Both of hydroxyl radicals (HO·) and superoxide radicals (O2-·) were determined to be responsible for CFX degradation, HO· plays a major role in the degradation of CFX. The anions of SO42-, Cl- had a slight impact on CFX degradation, while HCO3-significantly inhibited CFX degradation. When the Fe3+/AA/CP system was used to treat real swine wastewater with complex composition, the results indicated that the dosage increase for the reagents was required for the effective CFX degradation.
Key words:ascorbic acid/
calcium peroxide/
cefalexin/
reactive oxygen species/
degradation rate.

加载中
[1] DODD M C, RENTSCH D, SINGER H P, et al.Transformation of β-lactam antibacterial agents during aqueous ozonation: Reaction pathways and quantitative bioassay of biologically-active oxidation products[J].Environmental Science & Technology,2010,44(15):5940-5948 10.1021/es101061w
[2] CHEN J, SUN P, ZHANG Y, et al.Multiple roles of Cu(II) in catalyzing hydrolysis and oxidation of β-lactam antibiotics[J].Environmental Science & Technology,2016,50(22):12156-12165 10.1021/acs.est.6b02702
[3] KIM S D, CHO J, KIM I S, et al.Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and wastewaters[J].Water Research,2007,41(5):1013-1021 10.1016/j.watres.2006.06.034
[4] CHA J M, YANG S, CARLSON K H, et al.Trace determination of β-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry[J].Journal of Chromatography A,2006,1115(1/2):46-57 10.1016/j.chroma.2006.02.086
[5] GULKOWSKA A, HE Y, SO M K, et al.The occurrence of selected antibiotics in Hong Kong coastal waters[J].Marine Pollution Bulletin,2007,54(8):1287-1293
[6] JIANG M, WANG L, JI R, et al.Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment[J].Chemosphere,2010,80(11):1399-1405 10.1016/j.chemosphere.2010.05.048
[7] NAKADA N, SHINOHARA H, MURATA A, et al.Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant[J].Water Research,2007,41(19):4373-4382 10.1016/j.watres.2007.06.038
[8] YOON Y, WESTERHOFF P, SNYDER S A, et al.Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products[J].Journal of Membrane Science,2006,270(1/2):88-100 10.1016/j.memsci.2005.06.045
[9] RADJENVIC J, PETROVIC M, VENTURA F, et al.Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment[J].Water Research,2008,42(14):3601-3610 10.1016/j.watres.2008.05.020
[10] SUAREZ S, CARBALLA M, OMIL F, et al.How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters[J].Reviews in Environmental Science and Bio/Technology,2008,7(2):125-138
[11] 柴玉峰, 张玉秀, 陈梅雪,等. 冀西北典型北方小城镇污水处理厂中抗生素的分布和去除[J]. 环境科学,2018,39(6):2724-2731 10.13227/j.hjkx.201710104
[12] 时红蕾,王晓昌,李倩. 人粪便好氧堆肥过程中典型抗生素的消减特性[J]. 环境科学,2018,39(7):3434-3442 10.13227/j.hjkx.201711182
[13] QIAN Y, ZHOU X, ZHANG Y, et al.Performance and properties of nanoscale calcium peroxide for toluene removal[J].Chemosphere.2013,91(5):717-723 10.1016/j.chemosphere.2013.01.049
[14] MA Y , ZHANG B T , ZHAO L , et al.Study on the generation mechanism of reactive oxygen species on calcium peroxide by chemiluminescence and UV-visible spectra[J].Luminescence,2010,22(6):575-580
[15] NORTHUP A, CASSIDY D.Calcium peroxide (CaO2) for use in modified Fenton chemistry[J].Journal of Hazardous Materials,2008,152(3):1164-1170 10.1016/j.jhazmat.2007.07.096
[16] BOGAN B W , TRBOVIC V , PATEREK J R, et al.nclusion of vegetable oils in Fenton’s chemistry for remediation of PAH-contaminated soils[[J].Chemosphere, 2003,50 (1):15-21 10.1016/S0045-6535(02)00490-3
[17] QIAN Y, ZHOU X, ZHANG Y, et al.Performance of α-methylnaphthalene degradation by dual oxidant of persulfate/calcium peroxide: Implication for ISCO[J].Chemical Engineering Journal,2015,279:538-546 10.1016/j.cej.2015.05.053
[18] JONSSON S, PERSSON Y, FRANKKI S, et al.Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton's reagent: A multivariate evaluation of the importance of soil characteristics and PAH properties[J].Journal of Hazardous Materials,2007,149(1):86-96 10.1016/j.jhazmat.2007.03.057
[19] FLOTRON V, DELTEIL C, PADELLEC Y, et al.Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton's reagent process[J].Chemosphere,2005,59(10):1427-1437 10.1016/j.chemosphere.2004.12.065
[20] NEYENS E, BAEYENS J.A review of classic Fenton's peroxidation as an advanced oxidation technique[J].Journal of Hazardous Materials,2003,98(1):33-50 10.1016/S0304-3894(02)00282-0
[21] RASTOGI A, AL-ABED S R, DIONYSIOU D D, et al.Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols[J].Water Research,2009,43(3):684-694 10.1016/j.watres.2008.10.045
[22] OSEPH J, PIGNATELL O , ESTHER , et al.Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J].Critical Reviews in Environmental Science & Technology,2006,36(1):1-84
[23] DE LUCA A, DANTAS R F, ESPLUGAS S, et al.Assessment of iron chelates efficiency for photo-Fenton at neutral pH[J].Water Research,2014,61:232-242 10.1016/j.watres.2014.05.033
[24] LI Y C , BACHAS L G , BHATTACHARYYA D.Kinetics studies of trichlorophenol destruction by chelate-based Fenton reaction[J].Environmental Engineering Science,2005,22(6):756-771 10.1089/ees.2005.22.756
[25] FUKUCHI S, NISHIMOTO R, FUKUSHIMA M, et al.Effects of reducing agents on the degradation of 2,4,6-tribromophenol in a heterogeneous Fenton-like system with an iron-loaded natural zeolite[J].Applied Catalysis B: Environmental,2014,147:411-419
[26] LIN Y, LIANG C.Carbon tetrachloride degradation by alkaline ascorbic acid solution[J].Environmental Science & Technology,2013,47(7):3299-3307 10.1021/es304441e
[27] XUE Y , GU X , LU S, et al.The destruction of benzene by calcium peroxide activated with Fe(II) in water.[J].Chemical Engineering Journal,2016,302:187-193 10.1016/j.cej.2016.05.016
[28] BOLOBAJEV J , TRAPIDO M , GOI A.Interaction of tannic acid with ferric iron to assist 2,4,6-trichlorophenol catalytic decomposition and reuse of ferric sludge as a source of iron catalyst in Fenton-based treatment[J].Applied Catalysis B:Environmental,2016,187:75-82 10.1016/j.apcatb.2016.01.015
[29] LEWIS S, LYNCH A , BACHAS L , et al.Chelate-modified Fenton reaction for the degradation of trichloroethylene in aqueous and two-phase systems[J].Environmental Engineering Science,2009,26(4):849-859 10.1089/ees.2008.0277
[30] MARC P B , CELIA B , ANDREW C , et al.Ascorbic acid: A review of its chemistry and reactivity in relation to a wine environment [J].Critical Reviews in Food Science & Nutrition,2011,51(6):479-498
[31] BOLOBAJEV J , TRAPIDO M , GOI A.Improvement in iron activation ability of alachlor Fenton-like oxidation by ascorbic acid[J].Chemical Engineering Journal,2015,281:566-574 10.1016/j.cej.2015.06.115
[32] 张乃东,郑威,彭永臻.褪色光度法测定芬顿体系中产生的羟自由基[J]. 分析化学,2003,31(5):552-554
[33] TROVO A G , SENIVS P , PALMIST E, et al.Decolorization kinetics of acid blue 161 by solid peroxides catalyzed by iron in aqueous solution[J].Desalination & Water Treatment,2015,1:1-13 10.1080/19443994.2015.1098573
[34] GORMAN J E, CLYDESDALE F M.The behavior and stability of iron-ascorbate complexes in solution[J].Journal of Food Science,1983,48(4):1217-1220 10.1111/j.1365-2621.1983.tb09195.x
[35] DE LAAT J, LE T G.Kinetics and modeling of the Fe (III)/H2O2 system in the presence of sulfate in acidic aqueous solutions[J].Environmental Science & Technology,2005,39:1811-1818 10.1021/es0493648
[36] BURKITT M J.Chemical, biological and medical controversies surrounding the Fenton reaction[J].Progress in Reaction Kinetics & Mechanism,2003,28(1):75-103 10.3184/007967403103165468
[37] KOMWEITZ H, MEYERSTEIN D.The plausible role of carbonate in photo-catalytic water oxidation processes[J].Physical Chemistry Chemical Physics,2016,18(16):11069-11072 10.1039/C5CP07389H
[38] ZHANG X, GU X, LU S, et al.Enhanced degradation of trichloroethene by calcium peroxide activated with Fe(III) in the presence of citric acid[J].Frontiers of Environmental Science & Engineering,2016,10(3):502-512
[39] BUXTON G V , GREENSTOCK C L , HELMAN W P , et al.Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution[J].Journal of Physical & Chemical Reference Data, 1988,17(2):513-886 10.1063/1.555805
[40] LIAO C H, KANG S F, WU F A.Hydroxyl radical scavenging role of chloride and bicarbonate ions in the HO/UV process[J].Chemosphere,2001,44(5):1193-1200 10.1016/S0045-6535(00)00278-2
[41] TANG W Z, HUANG C P. 2,4-dichlorophenol oxidation kinetics by Fenton’s reagent[J].Environmental Technology Letters,1996,17(12):1371-1378



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:946
HTML全文浏览数:805
PDF下载数:150
施引文献:0
出版历程

刊出日期:2018-10-11




-->








抗坏血酸对三价铁/过氧化钙体系降解头孢氨苄的影响

卢建1,,
黄天寅1,
徐劼1,
房聪1,
陈家斌1
1.苏州科技大学环境科学与工程学院,苏州 215009
基金项目: 国家自然科学基金资助项目(51509175) 苏州市民生科技项目(SS201666) 江苏省研究生实践创新计划(SJCX17-0676)
关键词: 抗坏血酸/
过氧化钙/
头孢氨苄/
活性氧物质/
降解率
摘要:通过添加抗坏血酸(AA)能够缓解铁离子形成沉淀和加速(Fe3+转化为Fe2+,催化CP产生活性氧物质(ROSs),对CFX降解起到促进作用。研究了Fe3+/AA/CP体系降解CFX的Fe3+浓度、AA浓度、CP浓度、初始pH等主要影响因素。结果表明:在Fe3+浓度0.60?mmol·L-1、AA浓度0.15?mmol·L-1、CP浓度0.144?g·L-1、CFX的初始浓度0.15?mmol·L-1和初始pH=3.00的室温条件下,20 min内CFX的降解率可达到100%。随着初始pH升高,CFX的降解率随之降低。反应过程中降解CFX的活性物质为羟基自由基(HO·)和超氧自由基(O2-·),其中HO·对CFX降解起到主导作用。水中阴离子的影响表明,SO42-、Cl-对CFX的降解影响较小;但HCO3-对CFX的降解有明显的抑制作用。在处理成分较复杂的实际养殖废水实验中,发现只有提高药剂量才能达到有效降解实际废水中头孢氨苄的目的。

English Abstract






--> --> --> 参考文献 (41)
相关话题/物质 环境科学 苏州科技大学 创新 工程学院

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 生物质锅炉烟气中PM-VOCs一体化脱除装置的设计
    湛世界1,2,,孟海波1,2,程红胜2,沈玉君2,樊啟州11.华中农业大学工学院,武汉4300702.农业部规划设计研究院,农业部资源循环利用技术与模式重点实验室,北京100125基金项目:公益性行业(农业)科研专项(201503135-3)DesignofPM-VOCsintegratedremo ...
    本站小编 Free考研考试 2021-12-31
  • 化学淋洗与生物质炭稳定化联合修复镉污染土壤
    李明1,,程寒飞1,安忠义1,王浩1,项萌1,汪宜敏21.中冶华天南京工程技术有限公司,南京2100192.河海大学环境学院,南京210098基金项目:江苏省自然科学基金资助项目(BK20160155)Chemicalleachingcombinedwithbiocharstabilizationr ...
    本站小编 Free考研考试 2021-12-31
  • 植物所科研人员揭示中国生物质氮资源库及其替代化肥潜力
    近年来,中国大力推进农药化肥“零增长”行动,倡导用有机肥替代化肥,有机肥来源成为研究的热点问题之一。理论上,地球上所有光合产物及其衍生物,如作物秸秆、蔬菜废弃物、畜禽粪便、城乡可降解生活垃圾等均可作为有机肥原料替代化肥。然而,具体到某一地区或者某个国家,生物质资源量及生物质氮库容量及其替代化肥的潜力 ...
    本站小编 Free考研考试 2021-12-31
  • 植物所陈蕾伊、张媛媛入选2021年度中科院青年创新促进会优秀会员
    近日,中国科学院人事局公布了2021年度中国科学院青年创新促进会(以下简称“青促会”)优秀会员名单,植物所陈蕾伊研究员、张媛媛副研究员入选。  陈蕾伊研究员主要从事全球变化与土壤碳循环研究,在土壤碳的变化特征、碳分解调控因素及其微生物机制方面取得了重要成果。先后主持国家自然科学基金优青项目、面上项目 ...
    本站小编 Free考研考试 2021-12-31
  • 植物所成果入选国家“十三五”科技创新成就展
    近日,国家“十三五”科技创新成就展在北京展览馆举行,中科院植物所4项成果入选。  光合作用系统的超分子组装及光能的生物利用机制 中科院植物所光合膜蛋白团队及合作团队利用X-射线晶体衍射学和冷冻电镜结构解析技术,首次解析了硅藻捕光天线复合体、硅藻光系统I-捕光天线I超级复合体、硅藻光系统II-捕光天线 ...
    本站小编 Free考研考试 2021-12-31
  • 植物所主办的英文期刊国际影响力再创新高
    2021年6月30日,科睿唯安SCI 2020年期刊引证报告(Journal Citation Reports,JCR)正式发布,中科院植物所主办的3种英文学术期刊Journal of Integrative Plant Biology(JIPB)、Journal of Systematics an ...
    本站小编 Free考研考试 2021-12-31
  • 中科院植物所参股企业获首届中国农业机器人创新大赛一等奖
    近日,“第一届中国农业机器人创新大赛”决赛结果揭晓,中科院植物所参股企业——福建省中科生物股份有限公司(以下简称中科三安)的“全自动垂直农业生产系统”荣获一等奖。  中科三安研发的“全自动垂直农业生产系统”可根据种植者需求选择作物品种,利用立体仓库式栽培层架,在有限的空间内最大限度提高种植面积,在轨 ...
    本站小编 Free考研考试 2021-12-31
  • 植物所3名科技人员入选2021年度中科院青年创新促进会会员
    近日,中国科学院人事局公布了2021年度青年创新促进会(以下简称“青促会”)会员名单。经植物所推荐、青促会审核、中科院人事局审批,植物所卫然、刘玲童、叶建飞3人入选2021年度青促会会员。  卫然副研究员主要从事蕨类植物的分类、系统和进化研究,主持国家自然科学基金青年基金项目1项,以第一、共同第一作 ...
    本站小编 Free考研考试 2021-12-31
  • 西宁市生物质燃烧源大气污染物排放清单
    中文关键词生物质燃烧源大气污染物排放清单西宁市不确定性分析英文关键词biomasscombustionsourceairpollutantsemissioninventoryXiningCityuncertaintyanalysis作者单位E-mail高玉宗南开大学环境科学与工程学院,天津30035 ...
    本站小编 Free考研考试 2021-12-31
  • 室内建筑装饰装修材料气味物质及其释放研究进展
    中文关键词建筑材料气味污染物嗅觉阈值臭氧二次释放英文关键词buildingmaterialsodorantsodorthresholdozonesecondaryemission作者单位E-mail张万众清华大学环境学院,环境模拟与污染控制国家重点实验室,北京100084zhwz0825@163.c ...
    本站小编 Free考研考试 2021-12-31