删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

环境DNA宏条形码监测湖泊真核浮游植物的精准性

本站小编 Free考研考试/2021-12-31

中文关键词环境DNA(eDNA)宏条形码真核浮游植物生物多样性精确性 英文关键词environmental DNA(eDNA)metabarcodingeukaryotic phytoplanktonbiodiversityprecision
作者单位E-mail
张丽娟南京大学环境学院, 污染控制与资源化国家重点实验室, 南京 210023ljzhang1993@163.com
徐杉昆明学院昆明滇池(湖泊)污染防治合作研究中心, 昆明 650214
昆明市河湖生态健康评估与修复院士工作站, 昆明 650214
赵峥昆明学院昆明滇池(湖泊)污染防治合作研究中心, 昆明 650214
昆明市河湖生态健康评估与修复院士工作站, 昆明 650214
周小华昆明学院昆明滇池(湖泊)污染防治合作研究中心, 昆明 650214
昆明市河湖生态健康评估与修复院士工作站, 昆明 650214
冯庆昆明学院昆明滇池(湖泊)污染防治合作研究中心, 昆明 650214
昆明市河湖生态健康评估与修复院士工作站, 昆明 650214
杨江华南京大学环境学院, 污染控制与资源化国家重点实验室, 南京 210023
李飞龙南京大学环境学院, 污染控制与资源化国家重点实验室, 南京 210023
王志浩南京大学环境学院, 污染控制与资源化国家重点实验室, 南京 210023
张效伟南京大学环境学院, 污染控制与资源化国家重点实验室, 南京 210023
昆明学院昆明滇池(湖泊)污染防治合作研究中心, 昆明 650214
昆明市河湖生态健康评估与修复院士工作站, 昆明 650214
zhangxw@nju.edu.cn
中文摘要 环境DNA(eDNA)宏条形码(metabarcoding)技术是一种基于分子的生物多样性高效监测手段,近年来越来越多地被应用于生态环境中生物要素的监测和评估.开展eDNA宏条形码监测技术的标准化和规范化研究,是将其业务化推广应用的前提.本研究以高原湖泊滇池和抚仙湖的真核浮游藻类为研究对象,探究了基于18S-V9宏条形码测序深度对生物多样性监测的影响;通过分析平行样本间物种分类单元的交叉率及α多样性的变异率(coefficient of variation,CV),评估了eDNA宏条形码监测真核浮游藻类结果的精确性.并采用eDNA宏条形码监测数据评估了滇池和抚仙湖北的真核藻类多样性.结果表明:①测序深度显著影响宏条形码技术检出物种的数目,适合滇池和抚仙湖北的eDNA真核藻类多样性分析的测序深度为≥30000条;②重复样品(n=3)间遗传分类单元(OTU)交叉率达到45.97%±1.67%,可注释分类单元(属)交叉率达到64.21%±3.25%,α多样性的变异率<10%.③基于现有DNA条码数据库,滇池和抚仙湖北分别鉴定出真核藻类75属和90属,覆盖本地历史记录形态学物种的62.5%和71.05%.④滇池不同水深的真核藻类多样性无明显差异,抚仙湖的真核藻类多样性具有显著垂直分布特征.和抚仙湖北部相比,滇池真核藻类多样性显著偏低,滇池南部的生物多样性明显高于中部和北部(P<0.05).综上,本研究建立了eDNA宏条形码技术监测结果的精确性评价方法,验证了基于18S-V9引物监测真核浮游植物多样性的可行性,结果可促进eDNA宏条形码监测技术推广与应用. 英文摘要 Environmental DNA (eDNA) metabarcoding provides a fast and efficient way to obtain biodiversity information that has been widely used in aquatic biodiversity monitoring and assessment. To facilitate the application of eDNA metabarcoding in China, the accuracy of metabarcoding data needs to be further assessed. Here, the eukaryotic phytoplankton in Dianchi Lake and the northern portion of Fuxian Lake were examined. The effect of sequencing depth on species diversity was also explored, and accuracy was evaluated by comparing the taxon overlap and coefficient of variation (CV) of the α diversity index among biological replicates. The results showed that:① Sequencing depth significantly affected the taxon number and accuracy of alpha diversity determinations. The suggested sequencing depth for metabarcoding of eukaryotic phytoplankton in Dianchi Lake and Fuxian Lake is at least 30000. ② The OTU overlap was 45.97%±1.67% among three biological replicates, the genera overlap was 64.21%±3.25%, and the CV of alpha diversity was less than 10%. ③ Seventy-five and 90 genera of eukaryotic algae were identified in Dianchi Lake and Fuxian Lake, respectively, covering 62.5% and 71.05% of the morphologically detected species, respectively. ④ There was no significant variation in the diversity of eukaryotic algae with depth in Dianchi Lake, while diversity showed significant vertical patterns in Fuxian Lake. Overall, eukaryotic algal diversity was significantly lower in Dianchi Lake compared to Fuxian Lake, and diversity in the southern portion of Dianchi Lake was significantly higher than that in the central and northern portions (P<0.05). Our study demonstrates the feasibility and accuracy of using eDNA-based techniques to monitor eukaryotic phytoplankton diversity, which supports the widespread application of eDNA metabarcoding in China.

PDF全文下载地址:

https://www.hjkx.ac.cn/hjkx/ch/reader/create_pdf.aspx?file_no=20210230&flag=1&journal_id=hjkx&year_id=2021

相关话题/生态 南京大学 环境学院 资源 实验室