删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于SBR-ABR实现PN-SAD耦合工艺的运行与优化调控

本站小编 Free考研考试/2021-12-31

中文关键词序批式活性污泥反应器-厌氧折流板反应器(SBR-ABR)厌氧氨氧化反硝化贡献率脱氮除碳 英文关键词SBR-ABRanaerobic ammonium oxidationdenitrificationcontribution efficiencynitrogen and carbon removal
作者单位E-mail
陈重军苏州科技大学环境科学与工程学院, 苏州 215009
江苏水处理技术与材料协同创新中心, 苏州 215009
江苏省环境科学与工程重点实验室, 苏州 215009
江苏省厌氧生物技术重点实验室, 无锡 214122
chongjunchen@163.com
张敏苏州科技大学环境科学与工程学院, 苏州 215009
姜滢苏州科技大学环境科学与工程学院, 苏州 215009
郭萌蕾苏州科技大学环境科学与工程学院, 苏州 215009
谢嘉玮苏州科技大学环境科学与工程学院, 苏州 215009
谢军祥苏州科技大学环境科学与工程学院, 苏州 215009
沈耀良苏州科技大学环境科学与工程学院, 苏州 215009
江苏水处理技术与材料协同创新中心, 苏州 215009
江苏省环境科学与工程重点实验室, 苏州 215009
中文摘要 采用序批式活性污泥反应器-厌氧折流板反应器(SBR-ABR)组合工艺,构建"部分亚硝化-厌氧氨氧化反硝化"(PN-SAD)反应链实现深度脱氮除碳.设定3种不同的运行工况,工况Ⅰ将SBR出水(NO2--N/NH4+-N为1~1.32)直接接入单隔室ABR厌氧氨氧化系统,发现虽然实现了厌氧氨氧化反应的稳定运行,但联合工艺总氮(TN)去除率低于80%,出水TN约20 mg·L-1.为在ABR内增加反硝化功能,向ABR反应器第三隔室添加反硝化污泥,于工况Ⅱ将SBR出水接入,发现耦合反应对TN去除率仍偏低,若实现深度脱氮需在厌氧氨氧化后段补充碳源.故在工况Ⅲ调控SBR出水(NO2--N/NH4+-N=5)与部分原水混合(NO2--N/NH4+-N=1.4;C/N=2.5),接入单隔室ABR厌氧氨氧化反硝化系统,不仅实现了厌氧氨氧化段基质的良好配比,也为反硝化提供了良好的有机碳源,整个工艺出水COD为50 mg·L-1左右,TN在6 mg·L-1以下,TN去除率达到95%.在SBR-ABR反应器内构建PN-SAD联合反应为废水深度脱氮除碳提供了理论基础. 英文摘要 This study uses three different operating phases for a sequencing batch reactor (SBR) combined with an anaerobic baffled reactor (ABR) to determine the effect of deep nitrogen and carbon removal by the "partial nitrification-anaerobic ammonium oxidation combined denitrification" (termed PN-SAD) reaction. The effluent of the SBR (NO2--N/NH4+-N ratio range of 1-1.32) was accessed directly to the single compartment ABR anammox system in phase Ⅰ. The results showed that although the anammox reaction was stable, the combined process total nitrogen (TN) removal efficiency was<80%, and the TN concentration of effluent was~20 mg·L-1. In order to increase the denitrification function in the ABR, denitrifying sludge was added to the third compartment of the ABR in phase Ⅱ. We found that the TN removal efficiency of the coupling reaction was still low. An organic carbon source should be supplied in the latter stage of anammox if deep nitrogen removal is required. Therefore, in phase Ⅲ, the effluent of the SBR (NO2--N/NH4+-N ratio of ~5) was mixed with the partial raw water (mixed water NO2--N/NH4+-N ratio of ~1.4; C/N ratio of 2.5). The mixed water was connected to the single compartment of the ABR. The PN-SAD system not only achieved a good matrix ratio at the anammox stage, but also provided a good carbon source for denitrification. The chemical oxygen demand (COD) concentration of the effluent in the whole process was 50 mg·L-1, the TN concentration of the effluent was<6 mg·L-1, and the TN removal efficiency was 95%. We conclude that the stable operation of the combined PN-SAD reaction provides the basis for deep nitrogen and carbon removal using the combined SBR-ABR process.

PDF全文下载地址:

https://www.hjkx.ac.cn/hjkx/ch/reader/create_pdf.aspx?file_no=20200137&flag=1&journal_id=hjkx&year_id=2020

相关话题/环境科学 苏州科技大学 工程学院 材料 创新