删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

黄土丘陵区侵蚀坡面土壤微生物量碳时空动态及影响因素

本站小编 Free考研考试/2021-12-31

中文关键词有机碳水平侵蚀-沉积区土壤微生物量碳(SMBC)土壤温湿度敏感性 英文关键词organic carbon levelserosion/deposing areasoil microbial biomass carbon (SMBC)soil temperature and humiditysensitivity
作者单位E-mail
覃乾西北农林科技大学林学院, 杨凌 712100qq.hncx@nwafu.edu.cn
朱世硕西北农林科技大学林学院, 杨凌 712100
夏彬中国科学院水利部水土保持研究所, 黄土高原土壤侵蚀与旱地农业国家重点实验室, 杨凌 712100
赵允格中国科学院水利部水土保持研究所, 黄土高原土壤侵蚀与旱地农业国家重点实验室, 杨凌 712100
许明祥西北农林科技大学林学院, 杨凌 712100
中国科学院水利部水土保持研究所, 黄土高原土壤侵蚀与旱地农业国家重点实验室, 杨凌 712100
xumx@nwsuaf.edu.cn
中文摘要 以黄土丘陵区具有典型侵蚀和沉积部位的5个有机碳水平的侵蚀坡面为对象,通过对雨季土壤微生物量碳的研究,辨析了侵蚀-沉积条件下坡面土壤微生物量碳时空变化的影响因素及影响程度.结果表明:①土壤侵蚀导致坡面侵蚀-沉积区土壤温湿度、有机碳含量出现明显的时空分异,分异程度与土壤有机碳水平有关;②雨季末土壤微生物量碳相比雨季前显著增加,增幅可达91.08%~286.83%.坡面沉积区土壤微生物量碳含量大于侵蚀区,随着土壤有机碳水平升高,侵蚀-沉积区土壤微生物量碳含量差增大,空间分异加剧;③坡面侵蚀-沉积区土壤微生物量碳对土壤有机碳含量、温度、湿度等因素的敏感程度不同,雨季前土壤微生物量碳对土壤湿度变化最敏感,而雨季末沉积区土壤微生物量碳对土壤温度变化最敏感,在侵蚀区对土壤有机碳变化更为敏感.土壤侵蚀和季节变化是导致坡面土壤微生物量碳时空分布差异的重要原因,土壤微生物量碳对影响因素的敏感性差异主要是不同时空条件下限制性要素的转换所致. 英文摘要 Soil erosion affects the soil environment and exerts an important impact on the soil organic carbon distribution, deposition, conversion, and carbon dioxide emission. The soil microbial biomass carbon can respond sensitively to these changes. The soil microbial biomass carbon under erosion and sedimentation conditions was studied for the erosional slopes at five organic carbon levels at typical erosion and deposition sites in the hilly loess plateau region. Through the study of the soil microbial biomass carbon in the rainy season, the influencing factors and their degree of influence on the soil microbial biomass carbon of the slope soil under erosion-sedimentation conditions were analyzed. The results showed that ① Soil erosion lead to significant spatial and temporal differentiation in the soil temperature and humidity and the soil organic carbon in the erosion and sedimentary area on the slope, and the degree of differentiation was related to the soil organic carbon level. ② The soil microbial biomass carbon increased significantly at the end of the rainy season, with an increase of 91.08%-286.83%. The soil microbial biomass carbon content in the slope sedimentary area was higher than that of the erosion area. With increasing soil organic carbon level, the difference between the soil microbial biomass carbon content of the erosion and sedimentary area increased, and its spatial differentiation increased. ③ The soil microbial biomass carbon in the erosion and deposition areas responded differently to the soil organic carbon content, temperature, soil moisture, and other factors. Before the rainy season, the soil microbial biomass carbon was most sensitive to soil moisture changes. However, at the end of the rainy season, the soil microbial biomass carbon was most sensitive to soil temperature changes in the deposition zone. The soil microbial biomass carbon was most sensitive to the soil organic carbon in the erosion zone. Soil erosion and seasonal variation were important reasons for the spatial and temporal distribution of the soil microbial biomass carbon on the eroding slopes. The differences in the sensitivity of the soil microbial biomass carbon to the different influencing factors was mainly due to the restrictive conversion of the different factors.

PDF全文下载地址:

https://www.hjkx.ac.cn/hjkx/ch/reader/create_pdf.aspx?file_no=20190454&flag=1&journal_id=hjkx&year_id=2019

相关话题/土壤 微生物 林学院 西北农林科技大学 中国科学院