删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

乙酸钠作为碳源不同污泥源短程反硝化过程亚硝酸盐积累特性

本站小编 Free考研考试/2021-12-31

中文关键词短程反硝化乙酸钠污泥源亚硝酸盐积累脱氮除碳 英文关键词partial denitrificationsodium acetatesludge sourcenitrite accumulatenitrogen and carbon removal
作者单位E-mail
毕春雪青岛大学环境科学与工程学院, 青岛 266071B_bichunxue@163.com
于德爽青岛大学环境科学与工程学院, 青岛 266071
杜世明青岛大学环境科学与工程学院, 青岛 266071
王晓霞青岛大学环境科学与工程学院, 青岛 266071elainewangxx@163.com
陈光辉青岛大学环境科学与工程学院, 青岛 266071
王钧青岛大学环境科学与工程学院, 青岛 266071
巩秀珍青岛大学环境科学与工程学院, 青岛 266071
都叶奇青岛大学环境科学与工程学院, 青岛 266071
中文摘要 为探究乙酸钠作为碳源时,不同污泥源外源短程反硝化过程中亚硝酸盐积累特性,采用1号和2号SBR分别接种某污水处理厂二沉池和同步硝化反硝化除磷系统剩余污泥,通过合理控制初始硝酸盐浓度和缺氧时间,实现了短程反硝化的启动,并考察了其在不同初始COD和NO3--N浓度条件下的碳、氮去除特性.试验结果表明:以乙酸钠为碳源,1号和2号SBR可分别在21 d和20 d实现短程反硝化的成功启动,且其NO2--N积累量和亚硝酸盐积累率(NAR)均维持在较高水平,分别为12.61 mg·L-1、79.76%和13.85mg·L-1、87.60%.当2号SBR初始NO3--N浓度为20mg·L-1,且初始COD浓度由60 mg·L-1升高至140mg·L-1时,系统实现最高NO2--N积累时间可由160 min逐渐缩短至6 min,同时NO3--N比反硝化速率(以VSS计)由3.84 mg·(g·h)-1增加至7.35 mg·(g·h)-1,初始COD浓度的提高有利于实现短程反硝化过程NO2--N积累.2号SBR初始COD浓度为100 mg·L-1,当初始NO3--N浓度由20 mg·L-1增加至30 mg·L-1时,系统NAR均维持在90%以上,最高可达100%(NO3--N初始浓度为25 mg·L-1);当初始NO3--N浓度≥35 mg·L-1时,系统COD不足导致NO3--N不能被完全还原为NO2--N.此外,在不同初始COD浓度(80、100、120 mg·L-1)和NO3--N浓度(20、25、30、40 mg·L-1)条件下,2号SBR的脱氮除碳和短程反硝化性能均优于1号SBR. 英文摘要 In order to explore the characteristics of nitrite accumulation during the operational period of partial denitrification in different sludge sources using sodium acetate as a carbon source, No.1 SBR and No.2 SBR were used to inoculate with surplus sludge taken separately from a secondary sedimentation tank of a sewage treatment plant and simultaneous nitrification and denitrifying phosphorus removal system. By reasonably controlling the initial nitrate concentration and anoxic time, partial denitrification was realized. The carbon and nitrogen removal characteristics under different initial COD and NO3--N concentrations were investigated. The results showed that, using sodium acetate as the carbon source, the partial denitrification process in No.1 SBR and No.2 SBR sludge successfully began in 21 d and 20 d, respectively. The accumulation of NO2--N and nitrite accumulation rate (NAR) in reactors were maintained at high levels (12.61 mg·L-1, 79.76% and 13.85 mg·L-1, 87.60%, respectively). When the initial NO3--N concentration of No.2 SBR was 20 mg·L-1 and the initial COD concentration increased from 60 mg·L-1 to 140 mg·L-1, the operation time for achieving the highest NO2--N accumulation in the system was shortened from 160 min to 6 min. The NO3--N ratio of the denitrification rate (in VSS) increased from 3.84 mg·(g·h)-1 to 7.35 mg·(g·h)-1. Increased initial COD concentration was beneficial to the accumulation of NO2--N during partial denitrification. When the initial COD concentration of No.2 SBR was 100 mg·L-1 and the initial NO3--N concentration increased from 20 mg·L-1 to 30 mg·L-1, NAR was maintained above 90% and up to 100% (the initial NO3--N concentration was 25 mg·L-1). When the initial NO3--N concentration was ≥ 35 mg·L-1, insufficient COD caused NO3--N to be completely reduced to NO2--N. Under different initial COD concentrations (80, 100, or 120 mg·L-1) and different initial NO3--N concentrations (20, 25, 30, or 40 mg·L-1), the nitrogen and carbon removal and partial denitrification performance of the No.2 SBR was better than that of No.1 SBR.

PDF全文下载地址:

https://www.hjkx.ac.cn/hjkx/ch/reader/create_pdf.aspx?file_no=20190233&flag=1&journal_id=hjkx&year_id=2019

相关话题/青岛大学 环境科学 工程学院 系统 中文