中文关键词
腐殖酸卡马西平石英砂吸附相对分子质量 英文关键词humic acid (HA)carbamazepine (CBZ)quartz sandadsorptionrelative molecular mass |
|
中文摘要 |
为探究溶解性有机质(DOM)不同相对分子质量组分在矿物质上的吸附特征及其与药物和个人护理品(PPCPs)类污染物的结合作用对两者吸附过程的影响,以卡马西平作为目标污染物,用商用腐殖酸制备DOM,以石英砂代表无机矿物,开展吸附实验,并采用透析实验和红外光谱表征等手段,探讨了不同相对分子质量腐殖酸(HA)的结构特征及其与卡马西平(CBZ)的结合作用对HA或CBZ在固相介质上吸附作用的差异及产生机制.结果表明,大分子量HA有更多的羟基、芳香烃和脂肪烃,以疏水物质为主;而小分子量HA有更多的醇和羧基,以亲水物质为主.HA与CBZ的结合主要通过CBZ的氨基与小分子量HA中极性官能团的结合,以及CBZ疏水基团与大分子量HA中脂肪族与芳香族的疏水作用.CBZ与HA之间的相互作用对腐殖酸或卡马西平的吸附产生明显差异.当CBZ不存在时,石英砂主要通过疏水作用结合HA中疏水性大分子或与HA的羟基、羧基等发生交换配位反应,且石英砂更倾向于吸附HA中的脂肪性及疏水性大分子组分.当CBZ存在时,石英砂转而吸附HA中的小分子量部分,且HA在石英砂上的最大吸附量减小.当HA不存在时,CBZ可通过疏水作用,范德华力和极性相互作用使其在石英砂上有一定量的吸附.加入HA后,石英砂吸附增加的CBZ归因于部分HA分子与CBZ结合后共吸附或累积吸附于石英砂上. |
英文摘要 |
In this work, sorption experiments were conducted to understand the adsorption characteristics of dissolved organic matter (DOM) of different relative molecular masses on minerals and the effects of their interaction with PPCPs on the adsorption process. This study chose carbamazepine (CBZ) as the target pollutant, quartz sand as the inorganic mineral, and commercial humic acid (HA) as the DOM. We studied the structural characteristics of HA with different relative molecular masses and the impact of their interaction with CBZ on their adsorption based on dialysis experiments and infrared spectroscopy. It was found that large molecular weight fractions of HA, which contain more hydroxyl, aromatic hydrocarbons, and aliphatic hydrocarbons, were mainly hydrophobic substances, while the smaller fractions, containing more alcohols and carboxyl groups, were mainly hydrophilic substances. The combination of HA and CBZ had two major mechanisms, the combination of amino groups of CBZ and polar functional groups in small molecular weight fractions of HA and hydrophobic interactions between hydrophobic groups and aliphatic or/aromatic compounds in large molecular weight HA. The interaction between CBZ and HA resulted in obvious differences in the adsorption of HA or CBZ. When CBZ does not exist, hydrophobic combinations occurred between HA through the hydrophobic components and quartz sand, which also experienced the exchange coordination reaction with the hydroxyl or carboxyl group of HA. In addition, HA adsorbed the aliphatic and hydrophobic macromolecular components. Quartz sand was used to adsorb the large hydrophobic molecules. When CBZ existed, it adsorbed the small molecular weight fractions of HA. The maximum HA adsorption capacity of quartz sand decreased. CBZ could be adsorbed on quartz sand by hydrophobic interaction, van Edward forces, and polarity interactions in the absence of HA. When adding HA, the adsorption increment of carbamazepine on quartz sand was due to the co-adsorption or accumulation of HA and CBZ after their combination. |
PDF全文下载地址:
https://www.hjkx.ac.cn/hjkx/ch/reader/create_pdf.aspx?file_no=20180529&flag=1&journal_id=hjkx&year_id=2018