删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

构建有机化合物斑马鱼雌激素干扰效应的二元分类模型

本站小编 Free考研考试/2021-12-30

王园宁,
刘会会,,
杨先海
南京理工大学环境与生物工程学院, 江苏省化工污染控制与资源化高校重点实验室, 南京 210094
作者简介: 王园宁(1995-),女,工学学士,硕士研究生,研究方向为生态毒理学,E-mail:1749713012@qq.com.
通讯作者: 刘会会,hhliu@njust.edu.cn ;
基金项目: 国家自然科学基金(No.41671489,21507038,21507061)


中图分类号: X171.5


Development of Binary Classification Models for Predicting Estrogenic Activity of Organic Compounds on Zebrafish

Wang Yuanning,
Liu Huihui,,
Yang Xianhai
Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Corresponding author: Liu Huihui,hhliu@njust.edu.cn ;

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(0)
相关文章
施引文献
资源附件(0)
访问统计

摘要:计算毒理学方法已成为辅助内分泌干扰物(EDCs)管理的决策支持工具。因此,发展内分泌干扰效应指标的(定量)结构活性关系((Q)SAR)等预测模型对于实现EDCs环境管理具有重要的意义。在雌激素受体(Q)SAR模型研究方面,目前主要针对人、牛、大鼠和小鼠等物种的雌激素受体干扰效应进行了研究,而对鱼等水生生物雌激素受体干扰效应等指标的(Q)SAR模型研究还较少。本研究采用基于欧几里德距离的K最近邻(kNN)分类算法,构建了斑马鱼雌激素受体干扰效应的二元分类模型。结果表明,2个最优模型训练集和验证集的预测准确度(Q)、敏感性(Sn)和特异性(Sp)参数均大于0.93,说明模型具有较好的预测能力。因此,能够用所建模型填补模型应用域内其他化合物缺失的斑马鱼雌激素受体干扰效应定性数据。
关键词: 有机化合物/
斑马鱼/
雌激素受体/
二元分类模型/
欧几里德距离

Abstract:Computational toxicology method has been a critical decision support tool for the management of endocrine disrupting chemicals (EDCs). Thus, it is of vital importance to develop the predictive models e.g. (quantitative) structure-activity relationship ((Q)SAR) for EDCs environmental management. For the available (Q)SAR models for estrogen receptor up to now, only the estrogenic activity of four species such as calf, rat, mouse, and human were modeled. While the (Q)SAR models for aquatic organisms e.g. fish were still less. Here, the binary classification models for predicting the estrogenic activity of zebrafish was attempted to construct employing the K nearest neighbor (kNN) classification algorithm based on Euclidean distance. The modeling results indicated that all of the prediction accuracy (Q), sensitivity (Sn) and specificity (Sp) of training sets and validation sets for the two optimal models are greater than 0.93, indicating that the models have good prediction ability. Therefore, the missing estrogenic activity data gap for other organic compounds within the application domain of derived models on their missing estrogenic activity data could be filled.
Key words:organic compounds/
zebrafish/
estrogen receptor/
binary classification model/
Euclidean distances.

加载中

相关话题/干扰 指标 资源 结构 工学