罗翔,
王雅,
张亚南,
陈景文,
工业生态与环境工程教育部重点实验室, 大连理工大学环境学院, 大连 116024
作者简介: 杨蕾(1990-),女,硕士,研究方向为污染生态化学,E-mail:yanglei_dlut@mail.dlut.edu.cn.
通讯作者: 陈景文,jwchen@dlut.edu.cn
基金项目: 国家自然科学基金(2132572921661142001)
中图分类号: X171.5
QSAR Models for Predicting Partition Coefficients of Organic Pollutants between Passive Sampling Materials and Water
Yang Lei,Luo Xiang,
Wang Ya,
Zhang Ya'nan,
Chen Jingwen,
Key Laboratory of Industrial Ecology and Environmental Engineering(MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
Corresponding author: Chen Jingwen,jwchen@dlut.edu.cn
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:污染物的被动采样材料-水分配系数(KPW)是衡量被动采样器性能和进行优化的一个重要指标,由于实验方法难以逐个测定众多污染物的KPW值,有必要发展其KPW预测方法。本研究选取聚乙烯(PE)、聚丙烯酸酯(PA)和硅橡胶(SR) 3类常用的被动采样材料共7种,采用多元线性回归分析方法构建可用于KPW预测的定量构效关系(QSAR)模型。所构建的QSAR模型具有良好的拟合优度(R2adj介于0.806~0.989)、稳健性(Q2LOO和Q2BOOT分别介于0.786~0.988和0.773~0.801)和预测能力(R2ext和Q2ext分别介于0.769~0.989和0.757~0.982),可以用于预测烷烃、烯烃、芳香类、醇类、酮类、酯类、醚类等多种有机污染物的logKPW值。有机污染物的logKPW与分子McGowan体积(Vx)、氯原子个数(nCl)、环周长(Rperim)、多重键个数(nBM)、N, O极性贡献的拓扑极性表面积(TPSA(NO))、[-N(=)=]结构个数(NddsN)和羟基个数(nROH)等参数有关。
关键词: 被动采样材料-水分配系数/
聚乙烯/
聚丙烯酸酯/
硅橡胶/
定量构效关系
Abstract:The partition coefficients for organic pollutants between sampling materials and water (KPW) are significant for designing passive sampling devices and calculating water concentrations from the samplers. However, it is difficult to measure KPW for all potential pollutants since experimental determination of KPW is generally laborious, time-consuming and expensive. Therefore, it is necessary to develop in silico models for predicting KPW values. In the present study, multiple linear regression analysis was employed to develop quantitative structure-activity relationship models for KPW of seven sampling materials. For the developed models, the adjusted correlation coefficient squares (R2adj) range from 0.806 to 0.989; the leave-one-out cross-validated Q2 (Q2LOO) and bootstrap method Q2BOOT range from 0.786 to 0.988 and from 0.773 to 0.801, respectively; the external explained R2ext and Q2ext range from 0.769 to 0.989 and from 0.757 to 0.982, respectively. The established models, with high goodness-of-fit, robustness and predictive ability, are capable of predicting KPW values of diverse chemical species including alkanes, alkenes, aromatics, alcohols, ketones, esters and ethers. The dominant molecular structural factors on logKPW of pollutants include McGowan volume (Vx/), the number of chlorine atoms (nCl), the ring perimeter (Rperim), the number of multiple bonds (nBM), the topological polar surface area with N and O polar contributions (TPSA(NO)), the number of [-N(=)=] (NddsN), and the number of hydroxyl groups (nROH).
Key words:passive sampling materials-water partition coefficients/
polyethylene/
polyacrylate/
silicone rubber/
quantitative structure-activity relationships.