北京大学工学院席鹏课题组与合作者在活细胞超分辨成像领域取得新突破,翻开了活细胞线粒体STED(Stimulated Emission DepletionMicroscopy)长时程观察的新篇章。该工作开发了一种新型线粒体染料MitoESq-635,其饱和光强相较于传统的ATTO 647N降低3.4倍,有利于长时间STED超分辨成像。利用这一优势,该工作实现了对活细胞线粒体长达50分钟的活细胞动态观测,达到了35.2纳米的超高分辨率,观测到了线粒体聚合以及分裂的动态过程。该成果于7月24日在线发表在《自然·通讯》(Nature Communications)上。
线粒体是细胞的“发电厂”,其内部具有丰富的线粒体嵴用于ATP合成。由于它具有自己独立的DNA,其也经常被认为是远古细菌入侵细胞并形成共生关系的一种典范。同时,在癌症等疾病中,由于新陈代谢异常,线粒体嵴也呈现异常。然而,受到衍射极限的影响,传统显微镜只有300nm左右的分辨率,无法观测线粒体嵴这类细微结构。STED超分辨技术因其超高分辨率和较快的成像速度,适用于研究线粒体嵴结构。但是STED技术通常需要较高的光强实现超分辨,对于线粒体的毒性极高,且普通染料很容易被光漂白。该项目所研发的新型线粒体染料MitoESq-635有较低的饱和功率,实现相同的分辨率只需要相对更低的STED光强,降低了光漂白的效果;同时有较高的稳定性,能够长时间照射仍保有较强的荧光强度。共定位结果显示该染料能特异性标记线粒体。这些特性使得它成为活细胞线粒体长时间STED超分辨成像的最佳染料之一。
利用这一染料结合STED超分辨技术,该工作实现了三维切片STED成像,提供了丰富的线粒体三维立体信息。该技术的动态超分辨的观测能力,推动了对线粒体动态过程的定量分析。随着拍摄时间的增加,线粒体的宽度会逐渐变大,荧光强度会缓慢下降,图像分辨率也会下降。团队通过合理地定量分析找到了合适的STED照射光强,平衡了分辨率、信噪比、拍摄时间等几个方面的参数。
该项目清晰地观察到了线粒体聚合以及分离的过程,对比与普通共聚焦显微镜,该技术实现了35.2纳米的超高分辨率,清晰地看到了线粒体嵴的动态变化。同时观察到了线粒体聚合在一起,以及分离开来的动态过程,对线粒体形态学和功能变化的研究有着重要意义。对比电子显微镜的图片,该项目在动态成像的基础上观察到了类似的线粒体结构,也进一步验证了该技术的超高分辨能力。
活细胞线粒体STED长时程成像。(a)线粒体动态成像结果;(b)共聚焦和STED对比;(c)强度分布展现了35.2纳米分辨率
北京大学席鹏教授提到,成像技术的发展目标不外乎“清”“快”“深”“活”(“轻快生活”)四个字,本项目正是在这四字方针的指导下,向“清晰”“快速”“深层”“活体”这四个方面研究突破,实现了35.2纳米的超高空间分辨率,同时可以达到0.66秒每帧的较高时间分辨率,较深的三维切片成像,以及长达50多分钟的活细胞动态成像。
该工作的共同第一作者杨旭三是北京大学工学院毕业博士生(导师席鹏),目前在康奈尔大学进行博士后研究;共同第一作者杨志刚是深圳大学光电工程学院教授,共同一作吴朝阳是北京大学工学院博士生(导师席鹏)。共同通讯作者分别为:席鹏,屈军乐(深圳大学),杨志刚(深圳大学,共同一作),杨旭三(共同一作)。
席鹏课题组近年来致力于超分辨技术的开发与应用,如:1) 综合利用上转换纳米探针的光子雪崩和交叉驰豫特性,实现了上转换低功率STED,将饱和光强降低两个数量级以上(Nature 2017);2) 利用反射驻波光场调控成功实现19nm的STED超分辨成像,达到目前STED生物样品成像分辨率的最高纪录,并对细胞核孔和病毒丝进行成像(Light 2016);3) 利用高斯-贝塞尔光场调控,将STED成像的轴向深度提升一个数量级(Laser Photonics Review 2016);4) 结合偏振与结构光实现荧光偶极子超分辨成像(Light 2016, Nature Communications 2019),并两次得到Nature Methods的研究亮点评价。这些工作为本工作奠定了坚实基础。
原文链接:https://www.nature.com/articles/s41467-020-17546-1
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
工学院席鹏课题组实现活细胞线粒体STED长时程观察
本站小编 Free考研考试/2021-12-20
相关话题/细胞 技术 工作 纳米 北京大学
高歌课题组在Nature Communications发表单细胞转录组数据检索新方法和参考数据库
作为细胞异质性研究的重要工具,单细胞转录组测序技术近年来蓬勃发展,并积累了大量研究数据。若能有效利用现有的单细胞数据进行检索与推断,研究者便能更好地进行新测序单细胞的注释,以及综合多数据集的研究。然而,精确的单细胞转录组数据检索和注释需要克服两个挑战:一、数据集之间的批次效应(batcheffect ...北京大学通知公告 本站小编 Free考研考试 2021-12-20北京大学人民医院王殊教授课题组与合作者在SCIENCE子刊发表研究成果
北京时间2020年6月24日,北京大学工学院席建忠教授课题组、北京大学人民医院王殊教授课题组与北京大学肿瘤医院等团队联合,在ScienceTranslationalMedicine(IF=17.2)《科学转化医学杂志》杂志上发表题为“Patient-DerivedTumor-LikeCellClus ...北京大学通知公告 本站小编 Free考研考试 2021-12-20张泽民课题组在Nature Communications发表单细胞类群纯度评估新方法
6月22日,北京大学生物医学前沿创新中心(BIOPIC)、生命科学学院、北京未来基因诊断高精尖创新中心(ICG)、生命科学联合中心(CLS)张泽民实验室联合百奥智汇在期刊NatureCommunications上发表了题为“Anentropy-basedmetricforassessingthepu ...北京大学通知公告 本站小编 Free考研考试 2021-12-20王初课题组发展新型探针大规模分析炎症巨噬细胞中的衣康酸修饰
近日,北京大学化学与分子工程学院、北京大学合成与功能生物分子中心、北大-清华生命科学联合中心王初课题组在JournalofAmericanChemicalSociety杂志上发表了题为“Chemoproteomicprofilingofitaconationbybioorthogonalprobes ...北京大学通知公告 本站小编 Free考研考试 2021-12-20北京大学跨学部生物医学工程系高卫平课题组受邀于《德国应用化学》发表综述:提出“蛋白质-高分子精准偶联”概念
日前,北京大学跨学部生物医学工程系高卫平课题组受邀在化学及材料领域国际顶级期刊《德国应用化学》(AngewandteChemieInternationalEdition)上在线发表了题为《精准偶联:制备蛋白质-高分子偶联物的新兴策略》(“PrecisionConjugation:AnEmerging ...北京大学通知公告 本站小编 Free考研考试 2021-12-20口腔医院张益教授团队发现消除糖尿病菌群抵抗可增强脂肪间充质干细胞I型糖尿病治疗效果
全世界每年约有78,000名青年被诊断为I型糖尿病。越来越多的研究表明,I型糖尿病患者肠道菌群处于紊乱状态,与健康人群有显著差别。间充质干细胞移植是治疗I型糖尿病的一种很有前景的方法,但其临床治疗效果有限,而其机制也尚未清楚。近日,北京大学口腔医院张益教授团队在生物医学1区杂志Theranostic ...北京大学通知公告 本站小编 Free考研考试 2021-12-20信息学院电子学系孙伟研究员课题组基于DNA模板的高性能碳纳米管晶体管研究取得重要进展
生物自组装结构具有精细的三维形貌,其关键结构参数小于光刻等传统纳米加工手段的分辨率极限。利用自组装生物分子作为加工模板,目前已实现金属材料、碳基材料、氧化物材料的可控形貌合成。然而,基于生物模板的电学器件的性能往往远落后于通过蚀刻或薄膜方法制备的同类器件,且缺乏长程取向规整性,因而制约了生物模板在高 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20北京大学口腔医院刘燕研究团队揭示骨矿化前体在细胞内的发生机制
近日,北京大学口腔医院正畸科刘燕研究团队与武汉大学口腔医院张玉峰教授,共同在国际顶级期刊《尖端科学》(AdvancedScience)发表题为“生物矿物前体形成起源于钙、磷团簇从内质网到线粒体的运输(BiomineralPrecursorFormationIsInitiatedbyTransport ...北京大学通知公告 本站小编 Free考研考试 2021-12-20信息学院电子学系张志勇-彭练矛课题组在用于高性能电子学的高密度半导体阵列碳纳米管研究中取得重要进展
集成电路的发展要求互补金属氧化物半导体(CMOS)晶体管在持续缩减尺寸的同时提升性能,降低功耗。随着主流CMOS集成电路缩减到亚10nm技术节点,采用新结构或新材料对抗场效应晶体管中的短沟道效应、进一步提升器件能量利用效率变得愈加重要。在诸多新型半导体材料中,半导体碳纳米管具有超高的电子和空穴迁移率 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20药学院屠鹏飞、姜勇团队创建精准单细胞微流控技术用于TRP通道调节剂的高效发现
为了有效解决中药药效成分的高效发现及其分子机制研究问题,近日,北京大学药学院天然药物及仿生药物国家重点实验室屠鹏飞、姜勇教授团队与青岛大学药学院王克威教授团队合作开发了一项精准单细胞微流控技术,用于瞬时受体电位(TransientReceptorPotential,TRP)通道调节剂的高效发现,相关 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20