锂离子电池作为清洁能源,被广泛应用于日常电子产品、人工智能、电动汽车、无人机等前沿科技领域。正极材料是锂离子电池的核心部分,直接决定了锂电池的能量密度、充放电循环性能、安全性、成本等。目前参与意义的正极材料有磷酸铁锂(LiFePO4)和三元层状材料(Li(NixMnyCoz)O2),其中三元层状材料具有较高的能量密度,是目前锂离子电池广泛应用的正极材料(如特斯拉电动汽车所采用的正极材料),也是锂离子电池领域研究了几十年、研究最为广泛的一类材料。对这类材料进行结构与性能相关性的深入研究,不仅对产业应用有重要意义,也为探索发现更好的正极材料奠定基础。
在这类层状材料中,过渡金属离子层与锂层交替排列,之间通过氧层间隔开。研究发现Ni/Li反位很容易发生在三元层状材料中(见图1),对其性能发挥产生影响,如影响锂离子的扩散速度、容量发挥和引发结构相变等,也有少数报道指出适量的Ni/Li反位有利于电化学循环过程中的结构稳定。所以Ni/Li反位对电化学性能的影响以及如何调控Ni/Li反位,成为大家普遍关心和研究的重要课题。传统观点认为Ni/Li反位是由于Ni2+与Li+具有相似的离子半径,Ni2+容易反位到Li(3b)的位置,但这很难解释高Ni层状材料中含有较多的Ni3+,但Ni/Li反位却更容易发生。因此对其背后的机理进行重新研究和深入认识具有基础理论和产业应用意义。
图1 (a)锂电池三元层状正极材料结构; (b)Ni/Li反位(TM)6?O3?Ni?O3?Li(TM)5结构基元
北京大学深圳研究生院新材料学院潘锋教授团队通过第一性原理计算,发现三元层状正极材料中过渡金属离子之间“自旋电子超交换”作用(两个过渡金属(TM)的自旋电子通过所共同链接的氧原子(O)的电子作为桥梁进行电子“超”交换相互作用,如图2所示),从而对Ni/Li反位起到关键性的调制作用。Ni/Li反位后,反位Ni2+会发生自旋反转,与过渡金属层的过渡金属离子(Ni2+, Ni3+,Mn4+)形成180°的超交换作用。由于反位Ni2+的3d轨道与O2-的2p轨道形成较强的σ键,这种180°超交换作用大大强于原过渡金属层状内的90°超交换相互作用。在反位Ni2+与过渡金属层过渡金属离子形成的180°超交换相互作用中,Ni2+-O2-Ni2+最强,Ni2+-O2-Co3+最弱,所以Ni/Li反位最易发生在反位后能形成较多线性Ni2+-O2-Ni2+的位置。这也解释了为什么在以往的实验报道中发现高Ni尤其是含有更多Ni2+的三元层状材料中含有较多的Ni/Li反位,而在“Ni=Mn”三元层状正极材料中,Co能抑制Ni/Li反位。基于超交换作用模型,课题组还发现在高Ni含有Ni2+/Ni3+混合价态的层状材料中,Ni3+会优先反位到Li层形成Ni2+,发生自旋反转形成更多的线性Ni2+-O2-Ni2+超交换作用。同时由于电荷补偿作用,原Ni3+附近的Co3+会变到Co4+,这也是课题组在国际上首次预测在高Ni三元层状材料中有Co4+存在。该预测也得到了美国伯克利国家实验室的同步辐射软X射线吸收谱的证实。上述发现不仅为三元层状正极材料长期以来的Ni/Li反位现象提供了很好的机理解释,也为今后三元正极材料的反位缺陷可控调制、新型三元材料的设计提供了重要线索,如寻找可替换Co的更便宜的金属离子。上述研究成果发表于国际著名物理化学期刊The Journal of the Physical Chemistry Letters上(J. Phys. Chem. Lett. 2017, 8, 5537-5542; Nature Index期刊, IF=9.35)。
图2. 三元层状材料Ni/Li反位后形成180°超交换相互作用:反位在Li层的过渡金属Ni与不反位在过渡金属层的Ni的自旋电子通过所共同链接的氧原子(O)的电子作为桥梁进行电子“超”交换相互作用。
本工作由新材料学院潘锋教授、郑家新副研究员指导硕士生滕高烽、辛潮博士后、博士生卓增庆共同完成。美国伯克利国家实验室杨万里教授参与软X射线的实验测量和机理讨论。以上工作得到了国家材料基因组重大专项(2016YFB0700600)、国家自然科学基金(Nos. 21603007 and 51672012)、深圳市科技创新委 (Nos.JCYJ20150729111733470 and JCYJ20151015162256516)的资助支持。
文章链接: http://pubs.acs.org/doi/10.1021/acs.jpclett.7b02498
编辑:白杨
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
新材料学院发现自旋电子超交换相互作用如何调控锂电池正极材料
本站小编 Free考研/2020-04-10
相关话题/材料 金属
王剑波课题组在金属卡宾催化领域取得系列研究进展
卡宾是有机反应的一类重要中间体,其特征是具有高度的反应活性,但是相应地反应的选择性差,在合成中的应用有限。通过卡宾与金属的络合形成金属卡宾可以有效地稳定这类活泼中间体,从而极大地提高其反应选择性。经由金属卡宾的催化反应已经发展成为有机合成化学中的一个十分重要的领域,其中一些反应在药物分子等的合成中得 ...北京大学通知公告 本站小编 Free考研 2020-04-10深研院新材料学院在纳米超容量锂电池正极材料研究中取得重要突破
电动车将成为未来主要的绿色交通工具,急需开发新型高容量、高稳定和高安全的锂电池。科学家们也在不断尝试各种方法提高锂电池的性能,其中纳米化是一种改进材料电化学性能的常见方法,尤其对于磷酸铁锂这类低电导率的材料具有显著的改善效果。纳米化的优点是缩短了锂离子的传输路径,可以获得更好的倍率性能。与块体材料相 ...北京大学通知公告 本站小编 Free考研 2020-04-10新材料学院在全固态锂电池的界面调控研究取得重要进展
电动车和手机的下一代锂电池将会选择能量密度更高和安全性更好的全固态锂离子电池。我们国家为了加速新材料和全固态锂离子电池研发,“十三五”期间首次设立了“材料基因组技术”国家重点研发计划,并且希望通过材料基因组的高通量计算、合成、检测及数据库(大数据的机器学习和智能分析)的新理念和新技术加速全固态锂离子 ...北京大学通知公告 本站小编 Free考研 2020-04-10深研院新材料学院在锂离子正极材料结构与性能研究取得重要进展
锂离子电池作为高效的能量存储系统在交通运输领域具有广泛的应用,包括混合式动力电动车(HEV),插电式混合动力汽车(PHEV)和电动汽车(EV),但是现有商用的锂离子电池正极材料不能够满足人们对于能量密度、倍率性能以及稳定性的需求。LiNixCoyMnzO2的安全性、流程繁琐性等问题阻碍了大规模的使用 ...北京大学通知公告 本站小编 Free考研 2020-04-10工学院李法新课题组在压电材料领域取得突破性进展
最近,北京大学工学院力学与工程科学系李法新课题组在压电材料领域取得突破性进展。他们提出了一种周期正交的极化方法,将目前最常用的PZT压电陶瓷中的非线性畴变应变变得可逆,实现了约0.6%的超大致动应变,是传统PZT压电陶瓷的4倍。该工作于2017年8月21日作为FeaturedArticle发表于JA ...北京大学通知公告 本站小编 Free考研 2020-04-10北大第三医院敖英芳教授团队在《先进材料》发表关节软骨损伤修复的最新研究成果
2017年8月4日,国际顶级材料学期刊AdvancedMaterials(《先进材料》,IF=19.79)发表了北京大学第三医院运动医学研究所敖英芳团队的题为“基于3D打印技术构建结构和功能优化的蚕丝蛋白-明胶支架修复关节软骨损伤”的研究成果。该研究以先进的3D打印技术构建结构与功能双重优化的新型关 ...北京大学通知公告 本站小编 Free考研 2020-04-10《自然?物理》发表量子材料科学中心贾爽及合作者关于“TaP中磁场诱导的外尔费米子湮灭”的研究成果
拓扑概念在凝聚态物理中的引入极大地加深了人们对各种低能态准粒子的理解。近年来,以外尔半金属为代表的拓扑半金属的发现是继拓扑绝缘体发现以来又一项重大进展。一般认为,晶体中实现的外尔费米子是具有拓扑保护的稳定准粒子。一对具有相反手性的外尔点只有被移动到同一动量坐标上才会发生湮灭。这种粒子和反粒子的相互湮 ...北京大学通知公告 本站小编 Free考研 2020-04-10“极端光学创新研究团队”在钙钛矿光伏材料的生长机理原位研究方面取得新进展
随着能源危机和环境污染问题的日益严峻,太阳能等绿色可再生能源近年来得到了广泛关注。伴随着光电转换效率的提升和生产成本的下降,太阳能电池愈加凸显其广阔的应用前景。有机无机杂化铅卤钙钛矿太阳能电池,作为新型太阳能电池的后起之秀,在短短七年内,光电转换效率从3.8%迅速增长到22.1%。虽然钙钛矿太阳能电 ...北京大学通知公告 本站小编 Free考研 2020-04-10深圳研究生院新材料学院在硅太阳能电池的机理和新材料方面取得重要进展
太阳能是各种可再生能源中最重要的基本能源,太阳能光伏电池是把太阳辐射能转换成电能。太阳能电池种类繁多,晶体(单晶和多晶)硅太阳能电池已经大规模应用,我国是全球最大的晶体硅太阳能电池制造和供应商,由于大多数的原材料和设备国产化,硅太阳能电池发电的成本一直在下降,与煤发电的成本有可比性。值得关注的是目前 ...北京大学通知公告 本站小编 Free考研 2020-04-10新机理引发高容量:北大新能源材料与器件课题组在锂电池负极研究取得重要进展
在容量、安全性和稳定性等方面具有突出储能优势的先进锂离子电池已经成为人们日常工作生活中必不可少的组成部分,已经广泛应用到微型便携式电子产品、电动汽车乃至电网调峰等二次电源系统。然而自从上世纪90年代被大规模应用以来,锂离子电池的比容量没有显著提升,因此也越来越无法满足智能手机要求的待机时间长、电动汽 ...北京大学通知公告 本站小编 Free考研 2020-04-10