删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

北京大学生命科学学院导师教师师资介绍简介-于翔

本站小编 Free考研考试/2020-04-10

于翔 邮  箱:yuxiang01@pku.edu.cn
职  称:教授
办公室电话:**
办公室地址:北京市海淀区颐和园路5号,北京大学,吕志和楼,100871
实验室电话:**
实验室地址:北京市海淀区颐和园路5号,北京大学,吕志和楼,100871


个人简介
科研领域
代表性论文
教育经历:1995-1999         哲学博士,英国剑桥大学、MRC分子生物学实验室
1992-1995         文学学士,英国剑桥大学、三一学院
荣誉奖励:2019    张香桐神经科学青年科学家奖
2017    中国科学院优秀研究生指导教师
2017    上海领军人才
2017    “****”科技创新领军人才
2016    上海市优秀学术带头人
2016    中青年科技创新领军人才
2014    第七届上海青年科技英才(基础研究类)
2014    第十一届中国青年女科学家奖
2012    中国科学院优秀研究生指导教师
2011    国家杰出青年科学基金
2005    中国科学院百人计划
2005    Grass Fellow, Marine Biological Laboratory, Woods Hole, MA.
1999        Wellcome Prize Travelling Research Fellowship
工作经历:2019-至今         教授,北京大学生命科学学院
2019-至今         研究员,北京大学-清华大学生命科学联合中心
2019-至今         研究员,北京大学麦戈文脑科学研究所
2019-至今         主任,北京大学医学部孤独症研究中心
2005-2019         研究员,中国科学院神经科学研究所
1999-2005         博士后,美国斯坦福大学医学中心
杂志编辑:编委,Journal of Cell Biology,2019- ;审稿编辑,Frontiers in Synaptic Neuroscience,2018- ;编委,Developmental Neurobiology,2017- ;编委,Scientific Reports,2015- ;审稿编辑,Frontiers in Cellular Neuroscience,2014- ;编委,Neuropharmacology, 2010- 执教课程:神经发育与可塑性 (秋季课程,主讲,本研)
调控神经环路发育与可塑性的分子与环路机制
大脑的正常认知功能依赖于其复杂而精细的神经网络。来自环境的刺激对大脑中神经元的生长、突触的形成,以及神经环路的建立至关重要。本团队前期的工作发现发育早期的大脑具有与成年大脑显著不同的可塑性机制,具体发现包括:1)早期感觉经验通过跨模态全局机制调节小鼠多个脑区的神经环路发育,且神经肽催产素是介导该过程的关键分子;2)系统性炎症早期,脑血管周细胞快速感应感染信号,并通过释放细胞因子CCL2增强多个脑区神经元的兴奋性;3)神经环路成熟期,小鼠感觉皮层的树突棘修剪和被保留树突棘的成熟被感觉经验协同调控,且树突棘之间对“cadherin/catenin复合物”这种有限资源的竞争介导了这一过程。
基于上述结果,我们提出了“早期神经环路跨模态全局发育假说”。 发育早期的大脑具有更高的可塑性——且部分脑功能具有关键期——是神经科学公认的现象,然而介导这些过程的机制仍不很清楚。本团队将结合单细胞表达谱分析、分子生物学、遗传学、免疫组化等方法,解析介导该过程的分子机制;还将运用电生理、光学成像、行为学等方法研究感觉经验与环境因素对发育早期神经元、胶质细胞和神经血管单元的调控,从而解析介导该可塑性的细胞与环路机制。解析幼年大脑发育早期跨模态可塑性的机制对理解大脑的工作原理有重要理论意义。孤独症谱系障碍、智力障碍等发育性神经系统疾病严重影响儿童健康。通过解析幼年大脑的工作原理,在发育早期给予有遗传风险的个体促进其大脑发育的个体化药物治疗与行为干预,有重要临床与社会意义。

关键词:神经发育、神经环路发育、突触可塑性、孤独症、自闭症
Original articles
1.Duan, L., Zhang, X.D., Miao, W.Y., Sun, Y.J., Xiong, G., Wu, Q., Li, G., Yang, P., Yu, H., Li, H., Wang, Y., Zhang, M., Hu, L.Y., Tong, X., Zhou, W.H., Yu, X.* (2018) PDGFRβ cells rapidly relay inflammatory signal from the circulatory system to neurons via chemokine CCL2. Neuron 100(1):183-200. (highlighted by same issue Preview 100(1):11-13)
2.Hu C.C., Xu X.*, Xiong G.L., Xu Q., Zhou B.R., Li C.Y., Qin Q., Liu C.X., Li H.P., Sun Y.J.*, Yu X.* (2018) Alterations in plasma cytokine levels in Chinese children with autism spectrum disorder. Autism Research 11(7):989-999
3.Li M.Y., Miao W.Y., Wu Q.Z., He S.J., Yan G., Yang Y., Liu J.J., Taketo M.M. and Yu, X.* (2017) A critical role of presynaptic Cadherin/Catenin/p140cap complexes in stabilizing spines and functional synapses in the neocortex. Neuron 94(6):1155-1172
4.Wang Q., Shen F.Y., Zou R., Zheng J.J., Yu X.*, Wang Y.W.* (2017) Ketamine-induced apoptosis in the mouse cerebral cortex follows similar characteristic of physiological apoptosis and can be regulated by neuronal activity. Mol. Brain 10(1):24. doi: 10.1186/s13041-017-0302-2.
5.Liu H., Sang S., Lu Y., Wang Z., Yu X.*, and Zhong C.* (2017) Thiamine metabolism is critical for regulating correlated growth of dendrite arbors and neuronal somata. Sci. Rep. 7(1):5342 doi: 10.1038/s41598-017-05476-w.
6.Wang L., Li M.Y., Qu C., Miao W.Y., Yin Q, Liao J., Cao H.T., Huang M., Wang K., Zuo E., Peng G., Zhang S.X., Chen G., Li Q., Tang K., Yu Q., Li Z., Wong CCL, Xu G., Jing N., Yu X.*, and Li J*. (2017) CRISPR-Cas9-mediated genome editing in one blastomere of two-cell embryos reveals a novel Tet3 function in regulating neocortical development. Cell Res. 27(6):815-829
7.Wang M., Li H., Takumi T., Qiu Z., Xu X.*, Yu X.* and Bian W.J.* (2017) Distinct Defects in Spine Formation or Pruning in Two Gene Duplication Mouse Models of Autism Neurosci. Bull. 33(2):143-152
8.Zhang S.X., Duan L.H., He S.J., Zhuang G.F. and Yu X.* (2017) Phosphatidylinositol 3,4-bisphosphate regulates neurite initiation and dendrite morphogenesis via actin aggregation. Cell Res. 27(2):253-273.
9.Zhang S.X., Duan L.H. and Yu, X.* (2016) Actin Aggregations Mark the Sites of Neurite Initiation. Neurosci. Bull. 32(1): 1-15.
10.Bian W.J., Miao W.Y., He S.J., Qiu Z. and Yu, X.* (2015) Coordinated spine pruning and maturation mediated by inter-spine competition for cadherin/catenin complexes. Cell 162(4): 808-822 [highlighted by Nat. Rev. Neurosci. 16(10):577; selected as “exceptional” by Faculty 1000]
11.Bian W.J., Miao W.Y., He S.J., Wan Z.F., Luo Z.G. and Yu, X.* (2015) A novel Wnt5a-Frizzled4 signaling pathway mediates activity-independent dendrite morphogenesis via the distal PDZ motif of Frizzled 4. Dev. Neurobiol. 75(8):805-822.
12.Zheng J.J., Li S.J., Zhang X.D., Miao W.Y., Zhang D., Yao H. and Yu, X.* (2014) Oxytocin mediates early experience–dependent cross-modal plasticity in the sensory cortices. Nat. Neurosci. 17(3):391-399 [highlighted by same issue News and Views 17(3), 340 and by Nat. Rev. Neurosci. 15(3):139; selected as “exceptional” by Faculty 1000]
13.Peng Y.R., Hou Z.H. and Yu X.* (2013) The kinase activity of EphA4 mediates homeostatic scaling-down of synaptic strength via activation of Cdk5. Neuropharmacology 65(1):232-243.
14.Hou Z.H. and Yu X.* (2013) Activity-regulated somatostatin expression reduces dendritic spine density and lowers excitatory synaptic transmission via post-synaptic somatostatin receptor 4. J. Biol. Chem. 288(4):2501-2509.
15.Xu X.*, Xu Q., Zhang Y., Zhang X., Cheng T., Wu B., Ding Y., Lu P., Zheng J., Zhang M., Qiu Z., and Yu X.* (2012) A case report of Chinese brothers with inherited MECP2-containing duplication: autism and intellectual disability, but not seizures or respiratory infections. BMC Med Genet. 13(1):75 doi:10.1186/1471- 2350-13-75
16.Liu N., He S. and Yu X.* (2012) Early natural stimulation through environmental enrichment accelerates neuronal development in the mouse dentate gyrus. PLoS One 7(1):e30803. doi: 10.1371/journal.pone.**
17.Peng Y.R., Zeng S.Y., Song H.L., Li M.Y., Yamada M.K., and Yu X.* (2010) Postsynaptic spiking homeostatically induces cell-autonomous regulation of inhibitory inputs via retrograde signaling J. Neurosci. 30(48):16220-16231, cover story.
18.He S., Ma J., Liu N. and Yu, X.* (2010) Early enriched environment promotes neonatal GABAergic neurotransmission and accelerates synapse maturation. J. Neurosci. 30(23):7910-7916.
19.Tan Z.J., Peng Y., Song H.L. and Yu X.* (2010) N-cadherin dependent neuron-neuron interaction is required for the maintenance of activity-induced dendrite growth. Proc. Natl. Acad. Sci. USA 107(21):9873-9878, cover story.
20.Peng Y.R., He S., Marie H., Zeng S.Y., Ma J., Tan Z.J., Lee S., Malenka R.C.*, and Yu X.* (2009) Coordinated changes in dendritic arborization and synaptic strength during neural circuit development. Neuron 61(1):71-84. (Selected by Faculty 1000).
21.Yu, X.* and Malenka R.C.* (2004) Multiple functions for the cadherin/catenin complex during neuronal development. The Cytoskeleton and Synaptic Function Issue Neuropharm. 47(5):779-?786.
22.Yu X.* and Malenka R.C.* (2003) β?-catenin is critical for dendritic morphogenesis. Nature Neurosci. 6(11): 1169-?1177, cover story.
Reviews and Editorials
1.Yu X.*, Qiu Z.* and Zhang D.* (2017) Recent Research Progress in Autism Spectrum Disorder. Neurosci. Bull. 33(2):125-129 (editorial)
2.Stoop R.* and Yu X.* (2017) Special issue on: “Oxytocin in development and plasticity”. Developmental Neurobiology 77(2):125-127 (editorial)
3.Yu X. (2011) Tools for studying the role of N-cadherin mediated extracellular interaction in neuronal development and function. Cell Adhesion & Migration 5(3):227-231

相关话题/北京大学 生命科学学院