删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
华北电力大学数理系导师教师师资介绍简介-郭宝珠
本站小编 Free考研考试/2020-04-26
姓名: 郭宝珠
职称: 教授
所在院系: 数理学院数学系
研究方向:Focus Area:
?分布参数系统控制 (Distributed Parameter Systems Control)
?控制理论 (Control Theory)
联系方式:
办公地址: 主楼 C1135
电子邮箱:bzguo@ncepu.edu.cn
办公电话:
个人简介及主要荣誉称号:
郭宝珠,男, 1962年2月生。 1982年毕业于山西大学数学系, 1984年硕士毕业于中国科学院系统科学研究所。 1991年获香港中文大学应用数学博士学位。1999年中国科学院“”入选者;2009年山西省首届“”专家。 2000起为中国科学院数学与系统科学研究院研究员, 2004-2019年为南非金山大学(University of the Witwatersrand)计算机与应用数学讲座教授。2019年加入华北电力大学数理学院。 主要从事从事无穷维系统的建模,控制,数值计算,偏微分方程解的研究。在人口分布参数控制, 无穷维系统的镇定问题, 振动系统分析的Riesz基理论,偏微分控制系统的适定性与正则性, 最优控制的数值解,输出含有时间延迟的分布参数系统控制,自抗扰控制等几个研究方面有重要的贡献。除去基金外, 六次主持国家基金项目, 数次主持南非科学基金会项目。出版包括科学出版社在内的中文专著两本, 国际著名出版社英文专著三本 (Springer 1999, 2019;Wiley 2016)。 数篇文章被国际同行公开评价为“重要的文章”; “非常重要的文章”。 关于柔性机器臂剪力反馈控制文章被国际同行公开评价为“卓越的文章,用熟练非凡的数学证明了对机器人学实践显然重要的结果”。 其关于Riesz 基的方法被国际文献称为”郭氏型Bari 定理”。关于自抗扰控制的三个主要环节, 跟踪微分器, 扩张状态观测器, 以及反馈的工作奠定了这一控制技术的理论基础, 被国际同行评论为``对自控扰控制理论做出了重要的贡献”。
教学与人才培养情况:
1.教学课程:
?曾经在南非教过的本科生课程: 线性系统控制; 最优控制
2.学生培养
出站博士后:马玉兰(2004-2006),张琼(2004-2006), 王军民(2004-2006), 孙兵(2005-2006),郭伟(2007-2008), 邵志超(2006-2008),张志雄(2007-2008), 柴树根(2007-2008), 丁俊堂(2008-2009), 常晋德(2009-2010), 吴涛涛(2009-2010),杨东辉(2010-2011), 金凤飞(2011-2012), 张亮(2012-2013),赵志良(2012-2013), 于怀强(2014-2015), 金凤飞(2013-2015),刘玉香(2014-2015)。
毕业博士:谢宇(2003), 郭伟(2004), 孙兵(2005),邵志超(2006), 常晋德(2007), 张志雄(2007), 周翠莲(2007),吴涛涛(2009), 杨坤一(2009), 金凤飞(2011), 张国栋(2011),赵志良(2012), 赵志学(2012), Pene M Kamga (2013),康文(2014), 周华成(2015), 刘军军(2015),吴泽浩(2017), 任寒景(2019)。
主要科研项目情况
[1] 博士后基金(主持): 1991.9--1993.9, 国家教委 : 0.5万;
[2] 生灭过程、 弹性系统、烧蚀过程及其分布参数控制(主持), 1995.1--1997.12, 国家基金委(**): 8.3万;
[3] 振动系统控制(主持), 1995.6--1998.6, 国家留学回国人员基金:3万;
[4] 水资源中的应用数学-中法先进计划(主持), 1998.1--1999.12,国家科技部: 5万;
[5] 复杂系统控制的基础理论研究(参加), 1997.1-2000.12, 国家科技部: 500万(本人:14万);
[6] Hilbert空间Riesz基方法与振动系统的边界控制(主持), 1999.1--2001.12, 国家基金委(**): 10万;
[7] 中科院(主持), 2000.6-2003.6, 中国科学院: 200万;
[8] 柔性结构振动控制的分布参数理论研究(参加), 2002.1-2004.12, 国家基金委(**): 18万(本人:8万);
[9]偏微分方程系统的适定性与正则性的研究(主持), 2004.1--2006.12,国家基金委(**): 15万;
[10]分布参数系统理论(国家基金})(主持), 2004.1-2007.12,国家基金委(**):120万;
[11] 数值求解最优控制: 动态规划方法(主持), 2010.1--2012.12,国家基金委(**): 31万;
[12] 山西省“”海外高层次人才}, 2010-2012, 100万;
[13]973 项目, 国家科技部 (2011CB808002)(参加), 2011.1-2015.12, 50万;
[14] 带有不确定干扰的无穷维系统的镇定(主持), 2013.1--2016.12,国家基金委(**): 80万;
[15]不确定偏微分控制系统的输出反馈与性能跟踪(主持), 2019.1--2022.12, 广东省教育厅(2017KZDXM087):30 万;
[16]不确定偏微分控制系统的输出反馈与性能跟踪(主持), 2019.1--2022.12,国家基金委(**): 65万.
主要获奖
[1]2014年北京市自然科学二等奖 (获奖人: 郭宝珠,王军民)
[2]2019年 教育部二等奖 (获奖人: 王军民, 郭宝珠)
代表性论著
专著:
[1]于景元、 郭宝珠、 朱广田, 人口分布参数控制理论,华中理工大学出版社, 1999年,360页.
[2]郭宝珠、柴树根,无穷维线性系统控制理论,科学出版社, 北京, 2012年, 406页。
[3]Z.H.Luo, B.Z.Guo and O.Morgul, Stability and Stabilization of Infinite Dimensional Systems with Applications, 403 pages, Springer-Verlag, London, 1999.
[4]B.Z.Guo and Z.L.Zhao, Active Disturbance Rejection Control for Nonlinear Systems: An Introduction}, 368 pages,Wiley & Sons, New York,2016.
[5]B.Z.Guo} and J.M.Wang, Control of Wave and Beam PDEs: The Riesz Basis Approach}, 596 pages, Springer-Verlag, Cham, 2019.
代表性论文:
[1]B.Z.Guo and Z.D.Mei, Output feedback stabilization for a classof first-order equation setting ofcollocatedwell-posed linear systems with time delay in observation, IEEE Transactions on Automatic Control, to appear.
[2] H.Feng, B.Z.Guo, and X.H.Wu, Trajectory planning approach to output tracking for a 1-D wave equation,IEEE Transactions on Automatic Control, to appear.
[3] H.C.Zhou, B.Z.Guo, and S.H.Xiang, Performance output tracking formulti-dimensional heat equation subject to unmatched disturbance and non-collocated control , IEEE Transactions on Automatic Control, to appear.
[4] Z.D.Mei and B.Z.Guo,Stabilization for infinite-dimensional linear systems with bounded control and time delayed observation,Systems & Control Letters, 134(2019),104532.
[5] J.Liu and B.Z.Guo,A novel semi-discrete scheme preserving uniformly exponential stability for an Euler-Bernoulli beam, Systems & Control Letters,134(2019), 104518.
[6]F.F.Jin and B.Z.Guo, Boundary output tracking for an Euler-Bernoulli beam equation with unmatched perturbations from a known exosystem, Automatica, 109(2019), 108507, 9 pp.
[7] W.Kang and B.Z.Guo, Arbitrary decay for boundary stabilization of Schrodinger equation subject to unknown disturbance by Lyapunov approach, IFAC Journal of Systems and Control,7(2019),100033.
[8]Z.L.Zhao and B.Z.Guo, A novel extended state observer for output tracking of MIMO systems with mismatched uncertainty, IEEE Transactions on Automatic Control,63(2018), 211-218.
[9] F.F.Jinand B.Z. Guo, Performance boundary output tracking for one-dimensional heat equation with boundary unmatched disturbance,Automatica, 96(2018),1-10.
[10] H.C.Zhou and B.Z.Guo, Boundary feedback stabilization foranunstable time fractional reaction diffusion equation,SIAM Journal on Control and Optimization, 56(2018), 75-101.
[11] Z.L.Zhao and B.Z.Guo,A nonlinear extended state observer based onfractional power functions, Automatica, 81(2017), 286-296.
[12] H.C.Zhou and B.Z.Guo, Unknown input observer design and output feedback stabilization for multi-dimensional wave equation with boundary control matched uncertainty, Journal of Differential Equations, 263(2017), 2213–2246.
[13]H.Feng and B.Z.Guo,Active disturbance rejection control: New and old results, Annual Reviews in Control, 44(2017), 238-248.
[14] H.Feng and B.Z.Guo, New unknown input observer and output feedback stabilization for uncertain heat equation, Automatica, 86(2017), 1-10.
[15] H.Feng and B.Z.Guo, A new active disturbance rejection control to output feedback stabilization for a one-dimensional anti-stable wave equation withdisturbance,IEEE Transactions on Automatic Control,62(2017),3774-3787.
[16] H.Feng and B.Z.Guo, Observer design andexponential stabilization forwave equation in energy space by boundary displacement measurement only, IEEE Transactions on Automatic Control,62(2017), 1438-1444.
[17] B.Z.Guo and Z.H.Wu, Output tracking for a class of nonlinear systems with mismatched uncertainties by active disturbance rejection control, Systems & Control Letters, 100(2017), 21-31.
[18]B.Z.Guo and H.Q.Yu, Optimal state estimation for non-time invertible evolutionary system, SIAM Journal on Control and Optimization, 54(2016),2754-2786.
[19] B.Z.Guo, Y.S.Xu, and D.H.Yang, Optimal actuator location ofminimum normcontrols for heat equation with general controlleddomain, Journal of Differential Equations,261(2016), 3588-3614.
[20]R.L.Wen, S.G.Chai, and B.Z.Guo, Well-posedness and exact controllability of fourth-order Schr?dinger equation with hinged boundary control and collocated observation, Mathematics ofControl, Signals, and Systems,28(2016),article 22.
[21] B.Z.Guo, Z.H.Wu, and H.C.Zhou, Active disturbance rejection control approach to output-feedback stabilization of a class of uncertain nonlinear systems subject to stochastic disturbance, IEEE Transactions on Automatic Control, 61(2016), 1613-1618.
[22] W.Guo and B.Z.Guo, Performance output tracking for a wave equation subject to unmatched general boundaryharmonic disturbance, Automatica,68(2016), 194-202.
[23] H.Feng and B.Z.Guo,Distributeddisturbance estimator and application to stabilization formulti-dimensional wave equation with corrupted boundary observation, Automatica,66(2016),25–33.
[24]Z.L.Zhao and B.Z.Guo, Extended state observer for uncertain lower triangular nonlinear systems,Systems and Control Letters,85(2015), 100-108.
[25] B.Sun and B.Z.Guo,Convergence of an upwind finite-difference scheme forHamilton-Jacobi-Bellman equation in optimal control,IEEE Transactions on Automatic Control, 60(2015), 3012-3017.
[26] H.Feng and B.Z.Guo, On stability equivalence betweendynamic output feedback and staticoutput feedback for a class of second order infinite-dimensional infinite-dimensional systems, SIAM Journal on Control and Optimization,53(2015),1934-1955.
[27] G.J.Zheng, B.Z.Guo, and M.M.Ali, Continuous dependence of optimal controlto controlled domain of actuatorfor heat equation,Systems and Control Letters,79(2015), 30-38.
[28] B.Z.Guo and F.F.Jin,Output feedback stabilization forone-dimensional wave equation subject to boundary disturbance, IEEE Transactions on Automatic Control, 60(2015), 824-830.
[29]B.Z.Guo and D.H.Yang, Optimal actuator location for time and norm optimal control ofnull controllable heat equation, Mathematics ofControl, Signals, and Systems,27(2015), 23–48.
[30]B.Z.Guo and H.C.Zhou, The active disturbance rejection control to stabilization for multi-dimensional wave equationwith boundary control matched disturbance, IEEE Transactions on Automatic Control, 60(2015), 143-157.
[31] F.F.Jin and B.Z.Guo, Lyapunov approach to output feedback stabilization forEuler-Bernoulli beam equation withboundary, Automatica, 52(2015), 95-102.
[32] H.Feng and B.Z.Guo, Output feedback stabilization for unstable wave equation with general corrupted boundary observation, Automatica, 50(2014), 3164-3172.
[33] G.J.Zheng, B.Z.Guo, and M.M.Ali,Stability of optimal control of heat equation withsingular potential, Systems and Control Letters,74(2014) 18-23.
[34] B.Z.Guo and H.C.Zhou, Active disturbance rejection control for rejecting boundary disturbancefrom multi-dimensional Kirchhoffplatevia boundary control, SIAM Journal on Control and Optimization, 52(2014),2800-2830.
[35] Q.Zhang, J.M.Wang and B.Z.Guo, Stabilization of the Euler-Bernoulli equation via boundary connection with heat equation, Mathematics ofControl, Signals, and Systems, 26(2014), 77-118.
[36] B.Z.Guo and L.Zhang, Local null controllability ofChemotaxis system of parabolic-elliptic type, Systems and Control Letters, 65(2014), 106-111.
[37] R.L.Wen, S.G.Chai, and B.Z.Guo, Well-posedness and exact controllability offourth order Schrodinger equation with boundary control and collocated observation, SIAM Journal on Control and Optimization,52(2014),365-396.
[38]B.Z.Guo and Z.L.Zhao, On convergence of the nonlinear active disturbance rejection control for MIMOSystems,SIAM Journal on Control and Optimization, 51(2013), 1727-1757.
[39]B.Z.Guo and Z.L.Zhao, Weak convergence ofnonlinear high-gain tracking differentiator,IEEE Transactions on Automatic Control,58(2013),1074-1080.
[40] B.Z.Guo and F.F.Jin, The active disturbance rejection and sliding mode control approachto the stabilization ofEuler-Bernoulli beam equation withboundary input disturbance, Automatica, 49(2013), 2911-2918.
[41] W.Guo and B.Z.Guo, Parameter estimation and non-collocated adaptive stabilization for a wave equationsubject to general boundaryharmonic disturbance, IEEE Transactions on Automatic Control, 58(2013), 1631-1643.
[42] W.Guo and B.Z.Guo Adaptive output feedback stabilization for one-dimensional wave equation with corrupted observation by harmonic disturbance, SIAM Journal on Control and Optimization, 51(2013), 1679–1706.
[43]B.Z.Guo andF.F.Jin,Sliding mode and active disturbance rejection control to stabilization of one-dimensional anti-stable wave equations subject to disturbance in boundary input, IEEE Transactions on Automatic Control,58(2013),1269-1274.
[44]B.Z.Guo and D.H.Yang, On convergence of boundary Hausdorff measure and application to a boundary shape optimization problem, SIAM Journal on Control and Optimization, 51(2013), 253–272.
[45] B.Z.Guo and Z.C.Shao, Well-posedness and regularity for non-uniformSchrodinger andEuler-Bernoulli equations with boundary control and observation,Quarterly of Applied Mathematics,70(2012), 111-132.
[46] B.Z.Guo and D.H.Yang,Somecompactclasses of open sets under Hausdorffdistance and application toshape optimization,SIAM Journal on Control and Optimization, 50(2012), 222–242.
[47]B.Z.Guo and Z.L.Zhao, On the convergence of extended state observer for nonlinear systems with uncertainty, Systems and Control Letters, 60(2011), 420-430.
[48] M. Krstic, B.Z.Guo and A. Smyshlyaev, Boundary controllers and observers for the linearized Schrodinger equation, SIAM Journal on Control and Optimization, 49(2011), 1479–1497.
[49] J.M.Wang, B.Z.Guo and M.Krstic, Wave equation stabilization by delays equal to even multiples of the wave propagation time,SIAM Journal on Control and Optimization, 49(2011), 517–554.
[50]S.G.Chai and B.Z.Guo, Well-posedness and regularity ofNaghdi'sshell equationunderboundary control, Journal of Differential Equations, 249 (2010) , 3174-3214.
[51] B.Z.Guo and F.F.Jin, Arbitrary decay ratefor two connected strings with joint anti-damping by boundary output feedback, Automatica, 46(2010),1203-1209.
[52] B.Z.Guo and K.Y.Yang, Output feedback stabilization of a one-dimensional Schrodinger equation by boundary observation with time delay, IEEE Transactions on Automatic Control,55(2010), 1226 -1232.
[53] S.G.Chai and B.Z.Guo, Feedthrough operator for linear elasticity system with boundary control and observation, SIAM Journal on Control and Optimization, 48(2010),3708-3734.
[54] B.Z.Guo and T.T.Wu, Approximation of optimal feedback control: A dynamic programming approach, Journal of Global Optimization, 46(2010), 395-422.
[55]B.Z.Guo and Z.X.Zhang, Well-posedness of systems of linear elasticity with Dirichlet boundary control and observation, SIAM Journal on Control and Optimization, 48(2009), 2139-2167.
[56] A.Smyshlyaev, B.Z.Guo and M.Krstic, Arbitrary decay rate for Euler-Bernoulli beam by backstepping boundary feedback, IEEE Transactions on Automatic Control,54(2009), 1134-1140.
[57] B.Z.Guo and K.Y.Yang, Dynamic stabilization of an Euler-Bernoulli beam equation with time delay in boundary observation, Automatica, 45(2009), 1468-475.
[58] B.Z.Guo and W.Guo, The strong stabilization of a one-dimensional wave equation by non-collocated dynamic boundary feedback control,Automatica, 45(2009), 790-797.
[59] B.Z.Guo and Z.C.Shao, Stabilization of an abstract second order system with application to wave equations under non-collocated control and observations, Systems and Control Letters, 58 (2009),334-341.
[60] J.D.Chang and B.Z.Guo, Application of Ingham-Beuling type type theorems to coefficients identifiability of vibrating systems: finite time identifiability , Differential and Integral Equations, 21(2008), 1037-1054.
[61] B.Z.Guo, J.M.Wang and K.Y.Yang, Dynamic stabilization of an Euler-Bernoulli beam under boundary control and non-collocated observation, Systems and Control Letters, 57(2008), 740-749.
[62] M. Krstic, B.Z. Guo, A. Balogh, and A. Smyshlyaev, Control of a tip-force destabilized shear beam by non-collocated observer-based boundary feedback, SIAM Journal on Control and Optimization, 47(2008), 553-574. [GuoKrstic2.pdf]
[63]M. Krstic, B.Z.Guo, A. Balogh and A. Smyshlyaev, Output-feedback stabilization of an unstable wave equation, Automatica, 44(2008), 63-74.
[64] B. Z. Guo and Z.X. Zhang,Well-Posedness and regularity for anEuler-Bernoulli plate with variable coefficients and boundary control and observation, Mathematics of Control, Signals, and Systems, 19(2007), 337-360.
[65]B. Z. Guo and Z. C. Shao, On well-posedness, regularity and exact controllability for problems of transmission ofplate equation with variable coefficients,Quarterly of Applied Mathematics, 65(2007), 705-736.
[66] B.Z. Guo and B. Sun, Numerical solution to the optimal feedback control of continuous casting process, Journal of Global Optimization, 39(2007), 171-195.
[67] J.D. Chang and B.Z. Guo, Identification of variable spacial coefficients for a beam equation from boundary measurement, Automatica, 43(2007), 732-737.
[68] B. Z. Guo and C.Z. Xu,The stabilization of a one-dimensional wave equation by boundary feedback with non-collocated observation, IEEE Transactions on Automatic Control, 52(2007),371-377.
[69] B.Z. Guo and J. M. Wang, Remarks on the application of the Keldysh Theorem to the completeness of root subspace of non-self-adjoint operators and comments on "Spectral operators generated by Timoshenko beam model", Systems and Control Letters, 55(2006), 1029-1032.
[70] B.Z. Guo and H. Zwart, On the relation between stability of continuous- and discrete time evolution equations via the Cayley transform, Integral Equations and Operator Theory, 54(2006), 349-383.
[71] B.Z. Guo and G.Q. Xu, Expansion of solution in terms of generalized eigenfunctions for a hyperbolic system with static boundary condition, Journal of Functional Analysis, 231(2006), 245-268.
[72] B.Z. Guo and J.M. Wang, The well-posedness and stability of a beam equation with conjugate variables assigned at the same boundary, IEEE Transactions on Automatic Control, 50(12)(2005), 2087-2093.
[73] B.Z. Guo and X. Zhang, The regularity of the wave equation with partial Dirichlet control and colocated observation,SIAM Journal on Control and Optimization, 44(5)(2005), 1598-1613.
[74] B.Z. Guo and Z.C. Shao, Regularity of a Schrodinger equation with Dirichlet control and colocated observation, Systems and Control Letters, 54(2005), 1135-1142.
[75] B.Z. Guo, J.M. Wang and S. P. Yung, Boundary stabilization of a flexible manipulator with rotational inertia, Differential and Integral Equations, 18 (9)(2005), 1013-1038.
[76] B.Z. Guo, J.M. Wang and S.P.Yung, On the C0-semigroup generation and exponential stability resulting from a shear force feedback on a rotating beam, Systems and Control Letters, 54(2005), 557-574.
[77] B.Z. Guo and G.Q. Xu, On Basis property of a hyperbolic system with dynamic boundary condition, Differential and Integral Equations, 18(1)(2005), 35-60.
[78] B.Z. Guo and Y. Xie, A sufficient condition on Riesz basis with parentheses of non-selfadjoint operator and application to a serially connected string system under joint feedbacks, SIAM Journal onControl andOptimizations, 43(4)(2004), 1234-1252.
[79]B.Z. Guo and G.Q. Xu, Riesz bases and exact controllability of C0-groups with one-dimensional input operators, Systems and Control Letters, 52(2004), 221-232.
[80]G.Q. Xu and B.Z. Guo, Riesz basis property of evolution equations in Hilbert spaces and application to a coupled string equation, SIAM Journal on Control and Optimization, 42(3)(2003), 966-984.
[81] B.Z. Guo and Y.H. Luo, Riesz basis property of a second order hyperbolic system with collocated scalar input/output, IEEE Transactions on Automatic Control, 47(2002), 693-698.
[82]B.Z. Guo and Y.H. Luo, Controllability and stability of a second order hyperbolic system with collocated sensor/actuator, Systems and Control Letters, 46(1)(2002),45-65.
[83] B.Z. Guo, Riesz basis property and exponential stability of controlled Euler-Bernoulli beam equations with variable coefficients,SIAM Journal on Control and Optimization, 40(6)(2002),1905 - 1923.
[84] B.Z. Guo, Riesz basis approach to the stabilization of a flexible beam with a tip mass, SIAM Journal on Control and Optimization, 39(2001), 1736-1747.
[85] W.D. Zhu, B. Z. Guo and C. D. Jr Mote, Stabilization of a translating tensioned beam through a pointwise control force, ASME Journal of Dynamic Systems, Measurement, and Control, 122(2000) 322-331.
[86] B.Z. Guo and C.Z. Xu, On the spectrum-determined growth condition of a vibration cable with a tip mass, IEEE Transactions on Automatic Control, 45(2000), 89-93.
[87] W.D. Zhu and B.Z. Guo, Free and forced vibration of an axially moving string with an arbitrary velocity profile, ASME Journal ofApplied Mechanics, 65(4)(1998), 901-907.
[88]W.D. Zhu and B.Z. Guo, On Hybrid boundary control of flexible systems, ASME Journal of Dynamic Systems, Measurement, and Control, 119(1997), 836-839. .
[89] B.Z. Guo and W.D. Zhu, On the energy decay of two coulpled strings through a joint damper, Journal of Sound and Vibration, 203(3)(1997), 447-455.
[90]W.D. Zhu, Mote C.D. Jr and B.Z. Guo, Asymptotic distribution of eigenvalues of constrained translating string, ASME Journalof Applied Mechanics, 64(1997), 613-619.
[91] Z.H. Luo and B.Z. Guo, Shear force feedback control of a single link flexible robot with revolute joint, IEEE Transactions on Automatic Control, 42(1)(1997), 53-65.
[92]Z.H. Luo, N. Kitamura and B.Z. Guo, Shear force feedback control of flexible robot arms, IEEE Transactions on Robotics Automation, 11(5)(1995),760-765.
[93] Z.H. Luo and B.Z. Guo, Further theoretical results on direct strain feedback control of flexible robot arms, IEEE Transactionson Automatic Control, 40(4)(1995), 747-751.
[94]W.L. Chan and B.Z. Guo, Global behavior of age-dependent Logistic population models, Journal of MathematicalBiology, 28(1990), 225-235.
[95] W.L. Chan and B.Z. Guo, On the semigroups for age-dependent population dynamics with spatial diffusion, Manuscripta Mathematica, 66(1989), 161-181.
[96]B. Z. Guo and W. L. Chan, A semigroup approach to age-dependent population dynamics with time delay, Communication in Partial Differential Equations, 14(6)(1989), 809-832.
相关话题/华北电力大学 数理
华北电力大学数理系导师教师师资介绍简介-罗振东
...华北电力大学师资导师 本站小编 Free考研考试 2020-04-26华北电力大学数理系导师教师师资介绍简介-杨晓忠
姓名:杨晓忠职称:教授(博士生导师)所在院系:数理学院研究方向:?金融工程中的快速算法及其应用Fastalgorithmanditsapplicationinfinancialengineering?分数阶系统动力学分析、计算和控制Dynamicsanalysis,calculationandcontroloffractionalordersystem联系方式办公地址:主楼C座1141室电子邮箱: ...华北电力大学师资导师 本站小编 Free考研考试 2020-04-26华北电力大学数理系导师教师师资介绍简介-陈德刚
姓名:陈德刚职称:教授所在院系:数理学院研究方向:机器学习与数据挖掘办公地址:主楼C座1121电子邮箱:wscz973@163.com办公电话:**个人简介及主要荣誉称号:陈德刚,男,1969年4月出生。1991年于四平师范学院数学系获得学士学位,1994年于东北师范大学数学系获得硕士学位,2000年于哈尔滨工业大学数学系获理学博士学位,2000-2002和2002-2004分别于西安交通大学理学 ...华北电力大学师资导师 本站小编 Free考研考试 2020-04-26华北电力大学数理系导师教师师资介绍简介-丁迅雷
姓名:丁迅雷职称:教授所在院系:数理学院研究方向(FocusArea):?理论与计算化学Theoreticalandcomputationalchemistry?团簇与表面体系的电子结构Electronicstructureofclustersandsurfaces?催化反应机理Mechanismofcatalyticreactions?太阳能电池相关材料Solarcellrelatedmater ...华北电力大学师资导师 本站小编 Free考研考试 2020-04-26华北电力大学数理系导师教师师资介绍简介-黄海
姓名:黄海职称:教授所在院系:数理学院研究方向(FocusArea):?新型超导材料在核科学与工程中的应用(Applicationofnewsuperconductingmaterialsinnuclearscienceandengineering)?核辐射量子功能材料的机理研究和环境保护技术(Researchonradiativequantumfunctionalmaterialsandenvi ...华北电力大学师资导师 本站小编 Free考研考试 2020-04-26华北电力大学数理系导师教师师资介绍简介-卢占会
姓名:卢占会职称:教授所在院系:数理学院研究方向(FocusArea)?系统分析、运筹与控制(Systemanalysis,operationsplanningandcontrol)?随机电力系统稳定性分析与控制(Stabilityanalysisandcontrolofstochasticpowersystem)联系方式:办公地址:教四楼B区303电子邮箱:luzhanhui@ncepu.edu ...华北电力大学师资导师 本站小编 Free考研考试 2020-04-26华北电力大学数理系导师教师师资介绍简介-王雷
姓名:王雷职称:副教授,硕/博士生导师所在院系:数理学院研究方向:非线性波的理论、计算、机制分析及应用机器学习在偏微分方程中的应用联系方式:电子邮箱:**@ncepu.edu.cn办公电话:个人简介:王雷,男,汉族,1980年9月生,2005年毕业于哈尔滨工业大学数学系获信息与计算科学学士学位,2007年毕业于哈尔滨工业大学深圳研究生院获应用数学硕士学位,2011年毕业于北京航空航天大学,获得流体 ...华北电力大学师资导师 本站小编 Free考研考试 2020-04-26华北电力大学数理系导师教师师资介绍简介-曹李刚
姓名:曹李刚职称:教授所在院系:数理学院研究方向:FocusArea:原子核多体理论,Nuclearmany-bodytheory联系方式:办公地址:主C1130电子邮箱:caolg@ncepu.edu.cn办公电话:个人简介及主要荣誉称号:曹李刚,男,1974年7月生。1997年、1999年在西北大学物理学和理论物理专业获得学士、硕士学位,2002年8月在中国原子能科学研究院获得博士学位。200 ...华北电力大学师资导师 本站小编 Free考研考试 2020-04-26华北电力大学数理系导师教师师资介绍简介-李忠艳
姓名:李忠艳职称:教授所在院系:数理学院研究方向:FocusArea:?泛函分析、框架小波分析(FunctionalAnalysis、FramewaveletsAnalysis)?系统分析、运筹与控制(SystemAnalysis,OperationalResearchandControl)联系方式:办公地址:主楼C1122电子邮箱:lzhongy@ncepu.edu.cn办公电话:个人简介及主要 ...华北电力大学师资导师 本站小编 Free考研考试 2020-04-26华北电力大学数理系导师教师师资介绍简介-陈学刚
姓名:陈学刚职称:教授所在院系:数理学院研究方向:组合优化(Combinatorialoptimization)算法设计与分析,DesignandanalysisofAlgorithm图论,graphtheory联系方式:办公地址:主C-1128电子邮箱:gxcxdm@163.com办公电话:**个人简介及主要荣誉称号:陈学刚,男,1970年9月生。1994年、1997年在曲阜师范大学数学系及运筹 ...华北电力大学师资导师 本站小编 Free考研考试 2020-04-26