关键词: 磁热效应/
磁熵变/
磁结构相变
English Abstract
Linear dependence of magnetocaloric effect on magnetic field in Mn0.6Fe0.4NiSi0.5Ge0.5 and Ni50Mn34Co2Sn14 with first-order magnetostructural transformation
Zhang Hu1,Xing Cheng-Fen1,
Long Ke-Wen2,3,
Xiao Ya-Ning1,
Tao Kun1,
Wang Li-Chen4,
Long Yi1
1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2.Chengxian Technology Co. Ltd., Foshan 528513, China;
3.Chuandong Magnetic Electronic Co. Ltd., Foshan 528513, China;
4.Department of Physics, Capital Normal University, Beijing 100048, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 51671022, 51701130), the National Key Research and Development Program of China (Grant No. 2017YFB0702704), the Natural Science Foundation of Beijing, China (Grant No. 2162022), and the Scientific and Technological Innovation Team Program of Foshan, China (Grant No. 2015IT100044).Received Date:09 May 2018
Accepted Date:09 August 2018
Published Online:20 October 2019
Abstract:The study on the field dependence of magnetocaloric effect (MCE) is considered to be of fundamental and practical importance, since it not only guides us in understanding and optimizing the MCE, but also helps us estimate the MCE for higher magnetic field which is not available in some laboratories. The magnetic field (0H) dependence of magnetic entropy change (△SM) has been studied extensively in many materials with second-order magnetic transition. However, the field dependence of MCE for first-order magnetic transition (FOMT) materials has not been sufficiently studied due to their complexity and diversity. In the present work, polycrystalline Mn0.6Fe0.4NiSi0.5Ge0.5, Ni50Mn34Co2Sn14, and LaFe11.7Si1.3 compounds with FOMT are prepared, and the magnetic and magnetocaloric properties are investigated systematically. In order to avoid a spurious △SM, the M-0H curves are measured in a loop process. The M-0H curves are corrected by taking into account the demagnetization effect, i.e. Hint=Hext-NdM. It is found that the -△SM follows a linear relationship -△SM=-△S0 +0H with the variation of magnetic field in Mn0.6Fe0.4NiSi0.5Ge0.5 compound when 0H 1 T. In addition, it is also noted that the △SM is approximately proportional to the square of 0H at low field. The origin of this linear relationship between △SM and 0H at high field and the deviation at low field are discussed by numerically analyzing the Maxwell relation. In addition to the △SM peak value, it is found that other △SM values at different temperatures also follow the linear relation at high field by performing the same numerical analysis. Moreover, it is found that the fitted △SM curve matches the experimental data very well. This result indicates that the linear relationship between △SM and 0H could be utilized to predict the △SM for higher magnetic field change when the field is lower than the saturation field. The applicability of this linear relationship is also verified in other systems with first-order magnetostructural transformation, such as Ni50Mn34Co2Sn14. However, it fails to describe the field dependence of △SM in LaFe11.7Si1.3, which exhibits a strong field dependence of transition temperature. Consequently, our study reveals that a linear dependence of △SM on 0H could occur in magnetostructural transition materials, which show the field independence of transition temperature.
Keywords: magnetocaloric effect/
magnetic entropy change/
magnetostructural transition