关键词: 改性Ge/
能带结构/
带隙调制/
光电集成
English Abstract
Band structure model of modified Ge for optical device application
Yang Wen,Song Jian-Jun,
Ren Yuan,
Zhang He-Ming
1.Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
Fund Project:Project supported by the 111Project, China (Grant No. B12026).Received Date:12 June 2018
Accepted Date:24 July 2018
Published Online:05 October 2018
Abstract:Ge is an indirect bandgap semiconductor, which can be converted into a direct bandgap semiconductor by using the modification techniques. The carrier radiation recombination efficiency of modified Ge is high, which can be used in optical devices. The mobility of Ge semiconductor carriers is higher than that of Si semiconductor carriers, so Ge device can work fast and have good frequency characteristics in electronic device. In view of the application advantages of modified Ge semiconductors in both optical devices and electrical devices, it has been a potential material of monolithic optoelectronic integration. The Ge and GeSn as optoelectronic device materials have a great competitive advantage, but there is no mature Ge-based monolithic photoelectric integration. In order to realize Ge-based optical interconnection, the bandgap of luminous tube, detector and waveguide active layer material must satisfy the following sequence:Eg,waveguide Eg,luminoustube Eg,detector. Therefore, in order to achieve the same layer monolithic photoelectric integration, we must modulate the energy band structure of the active layer material of the device. Unfortunately, the literature in this area is lacking.The band structure is one of the theoretical foundations for the monolithic photoelectric integration of the modified Ge materials, but the work in this area is still inadequate. In this paper, this problem is investigated from three aspects. 1) Based on the generalized Hooke's law and the principle of deformation potential, a modified Ge bandgap type transformation model is established under different modification conditions, perfecting the theory of converting the indirect switching into direct band gap of Ge. 2) On the basis of establishing the strain tensor and deformation potential model, a modified Ge band E-k model is established, and the relevant conclusions can provide key parameters for LED and laser device simulation models. 3) Based on the theory of solid energy band, the bandgap width modulation scheme of the modified Ge under the uniaxial stress is proposed, which provides an important theoretical reference for realizing the Ge-based single-layer photoelectric integration. The results in this paper can provide an important theoretical basis for understanding the material physics of the modified Ge and designing the active layers of the light emitting devices in the Ge based optical interconnection.
Keywords: modified Ge/
energy band structure/
bandgap modulation/
optoelectronic integration