关键词: 锶原子光晶格钟/
钟跃迁探测/
自旋极化谱
English Abstract
Interrogation of spin polarized clock transition in strontium optical lattice clock
Guo Yang1,2,Yin Mo-Juan1,
Xu Qin-Fang1,
Wang Ye-Bing1,2,
Lu Ben-Quan1,2,
Ren Jie1,
Zhao Fang-Jing1,2,
Chang Hong1
1.Key Laboratory of Time and Frequency Primary Standards of Chinese Academy of Sciences, National Time Service Center, Xi'an 710600, China;
2.School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11474282, 61775220), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030700), and the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC004).Received Date:28 December 2017
Accepted Date:01 February 2018
Published Online:05 April 2018
Abstract:We demonstrate a spin-polarized clock transition spectrum of the 87Sr optical lattice clock. The clock transition 5s2 1S05s5p 3P0 of isotope 87Sr has a hyperfine structure due to non-zero nuclear spin, inducing ten -polarized transitions from each individual mF state under the condition of a bias magnetic field along the probing polarization axis. In this experiment, atoms are driven to a certain mF state by a circular-polarization pump light to maximize the atomic population, which is beneficial to the stability and uncertainty evaluation of the optical lattice clock. After two stages cooling and trapping, about 3.5106 atoms are trapped in the red magneto-optical trap with a temperature of 3.9 K. A grating-feedback external cavity diode laser with a tapered amplifier is used to build the optical lattice with a magic-wavelength of 813.426 nm. Both waists of the counter-propagating lattice beam along the horizontal direction are overlapped to form a one-dimensional (1D) optical lattice. The lifetime of the atoms trapped in the 1D optical lattice is 1600 ms. The clock laser at 698 nm is a grating-feedback diode laser, which is locked to an ultra-low expansion cavity by the Pound-Drever-Hall technique to stabilize the frequency and phase. As a result, the linewidth of clock laser is narrowed to Hz level. By the normalized shelving method, we obtain a resolved sideband spectrum of 87Sr 5s2 1S05s5p 3P0 transition. According to the spectrum, the lattice temperature along the longitudinal direction is approximately 4.2 K. After that a linewidth of 6.7 Hz of the degenerate clock transition is obtained at a probing time of 150 ms by utilizing a three-dimensional (3D) bias magnetic field, which is used to eliminate the stray magnetic fields. Then a small bias magnetic field of 300 mGs is applied along the polarization axis of the lattice light to achieve the spectrum of Zeeman magnetic sublevels of the clock transition. Furthermore, the mF=+9/2 and mF=-9/2 magnetic sublevels are picked to be respectively pumped by the +-polarized and --polarized light at 689 nm, a variable liquid crystal wave plate is employed to switch on both polarizations. Finally, the spin polarized clock transition spectrum is obtained at the interrogating pulse of 150 ms, and the linewidths of the mF=+9/2, mF=-9/2 magnetic sublevel transitions are 6.8 Hz and 6.2 Hz respectively.
Keywords: strontium optical lattice clock/
observation of clock transition/
the spin-polarized spectrum