关键词: 激光烧蚀/
等离子体/
青铜金刚石砂轮/
反冲压力
English Abstract
Research and application of plasma recoil pressure physical model for pulsed laser ablation material
Cai Song1,2,Chen Gen-Yu2,
Zhou Cong2,
Zhou Feng-Lin1,
Li Guang1
1.School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China;
2.State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos.51375161,11602082),and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No.2012ZX04003101).Received Date:24 January 2017
Accepted Date:03 May 2017
Published Online:05 July 2017
Abstract:In this paper, the physical properties of plasma in the isothermal expansion process when material is ablated by pulsed laser is analyzed. It is shown that the recoil pressure distribution of the plasma near the material surface indicates an exponential decrease as the distance from the material surface increases and the recoil pressure distribution exhibits the characteristics of a Poisson distribution in the X direction; the recoil pressure distribution is in accordance with Maxwell's velocity distribution law in the Y direction; the recoil pressure distribution conforms to a Gaussian distribution in the Z direction. A three-dimensional plasma recoil pressure equation and the plasma kinetic equation for laser-ablation materials are studied. These equations only require parameters to relate to plasma temperature, laser parameters and material properties, thus having a certain diversity.The equations are used for numerically analyzing the pulsed laser ablation of a bronze-bonded diamond grinding wheel. The numerical analysis shows that in the X and Y direction the plasma expansion dimension shows linear growth. After the pulse is ended, the plasma expansion dimension values reach their maxima. The plasma expansion velocity shows nonlinear growth. After the pulse is ended, the expansion velocity first increases and then decreases along the X direction and Y direction. Based on the analyses of the plasma expansion dimension and the plasma expansion velocity, the maximum plasma recoil pressure appears at a location approximately 0.05 mm away from the surface of the grinding wheel after approximately 25 ns. Through calculating the Saha equation, the degree of ionization is 0.0012 at 7506 K, and the maximum plasma recoil pressure value is approximately 870 Pa.The experiments on the pulsed laser ablation of a bronze-bonded diamond grinding wheel under the corresponding conditions are conducted. A high-speed camera is used to observe splash phenomenon in the laser ablation process. A grating spectrometer is used to measure the plasma emission spectrum. According to the Boltzmann plot method, the electron temperature value is calculated to be 7506 K; according to the Stark broadening method, the electron density values range from 7.6451015 to 1.16081016 cm-3 and the recoil pressure values from 792 to 1203 Pa. The experiments show that the recoil pressure during the pulsed laser ablation of bronze-bonded diamond grinding wheel process can be ignored, and the correctness and feasibility of the plasma recoil pressure equation are also verified, which has heuristic significance for optimizing the laser ablation process.
Keywords: laser ablation/
plasma/
bronze-bonded diamond grinding wheel/
recoil pressure