关键词: 肖特基势垒/
二硫化钼/
掺杂/
密度泛函理论
English Abstract
First principles investigation of the tuning in metal-MoS2 interface induced by doping
Tao Peng-Cheng1,2,Huang Yan1,
Zhou Xiao-Hao1,
Chen Xiao-Shuang1,
Lu Wei1
1.National Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;
2.University of Chinese Academy of Sciences, Beijing 100049, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11334008, 61290301).Received Date:27 December 2016
Accepted Date:01 March 2017
Published Online:05 June 2017
Abstract:Two-dimensional (2D) materials have shown great potential for electronic and optoelectronic applications. Among the 2D materials, molybdenum disulfide (MoS2) has received great attention in the transition metal dichalcogenides family. Unlike graphene, 2D MoS2 can exhibit semiconducting properties and its band gap is tunable with thickness. A demonstration of a single-layer MoS2 based field-effect transistor (FET) with a high on/off current ratio (about 108) has aroused the considerable interest. Although 2D MoS2 exhibits fascinating intrinsic properties for electronics, the contact may limit the device performance severely. In a real device such as FET, semiconducting 2D MoS2 needs contact with a metal electrode, and a Schottky barrier is always formed at the semiconductor-metal interface. The formation of low-resistance contact is a challenge, which is important for achieving high on current, large photoresponse and high-frequency operation. Therefore, understanding and tuning the interfaces formed between metals and 2D MoS2 is critical to controlling the contact resistance. In this work, some efforts have been made to investigate the 2D MoS2-metal interface in order to reduce the Schottky barrier height. By using the first-principles calculations based on density function theory, we investigate the effects of halogen doping-on metal-MoS2 interface, including the formation energy of defect, electronic structure, charge difference, and population. All calculations are performed using the ultrasoft pseudopotential plane wave method implemented in the CASTEP code. We use the generalized gradient approximation for the exchange and correlation potential as proposed by Perdew-Burke-Ernzerhof. Firstly, we calculate the formation energy to find the thermodynamically stable positions for the halogen elements located in 2D MoS2. It is shown that the halogen elements tend to occupy the S site of a MoS2 monolayer. Meanwhile, for the MoS2 monolayer, the halogen doping may introduce the defect level into the forbidden gap and make the Fermi level shift. For the metal-MoS2 interface, halogen doping can modulate its Schottky barrier height effectively in terms of Schottky-Mott model. This is because the Schottky barrier height at the metal-semiconductor interface depends on the difference between the Fermi level and the band edge position of the semiconductor. At the metal-MoS2 interface, the Fermi level is partially pinned as a result of the interface dipole formation and the production of the gap states. Therefore, using different metals with different work functions cannot modify the Schottky barrier height effectively. Here we demonstrate that F and Cl doping can reduce the Schottky barrier height, while Br and I doping can increase it. According to the results of the differential charge density analysis, we can ascribe the tuning of Schottky barrier height to the influence of the dipole caused by the charge transfer among the interfaces. This study can explain the relevant experimental results very well and provide a potential route to achieving low-resistance contact in the future applications of 2D materials.
Keywords: Schottky barrier/
MoS2/
doping/
density functional theory