关键词: 大气温度/
瑞利散射光谱/
高光谱激光雷达/
固体腔扫描法布里-珀罗干涉仪
English Abstract
Investigation of the absolute detection method of atmospheric temperature based on solid cavity scanning Fabry-Perot interferometer
Wang Jun,Cui Meng,
Lu Hong,
Wang Li,
Yan Qing,
Liu Jing-Jing,
Hua Deng-Xin
1.School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 61575159, 41627807), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2016JM6010), the Scientific Research Plan Project of Shaanxi Education Department, China (Grant No. 15JK1529), and the China Postdoctoral Science Foundation (Grant No. 2015M570846).Received Date:05 December 2016
Accepted Date:21 January 2017
Published Online:05 April 2017
Abstract:measurement methods based on Rayleigh scattering are employed to relatively detect atmospheric temperature profiles. That is to say, the definition of response functions and calibration procedures is required for temperature retrieval. Because the thermal motion rate of gas molecule complies with Maxwell distribution, and gas molecule is always in motion state, the frequency of scattering return signal generates Doppler spectral broadening. There is a positive correlation between the full width at half maximum of widened Doppler spectrum and T1/2, atmospheric absolute temperature can be obtained by measuring the Doppler spectrum shape. In this paper, the fine detection method of the spectrum shape of Rayleigh scattering and residuary Mie-scattering correction method based on solid cavity scanning Fabry-Perot (F-P) interferometer are investigated. According to the characteristics of Rayleigh scattering spectrum, the free spectral range, the geometric length of solid cavity, the type of cavity media, the full width at half maximum, the reflectivity of cavity, and the scanning step are designed. When the electro-optical crystal of KD*P with the length of 8.5 mm acts as solid cavity medium of scanning F-P interferometer, the designed free spectral region and 3 dB bandwidth are 11.5 GHz and 60 MHz at the central wavelength of 354.7 nm, respectively. The energy datum of 185 discrete points at Rayleigh scattering spectrum are obtained by using an optimized solid cavity scanning F-P interferometer with the scanning voltage of 23.5 V. A fitting spectrum is generated by employing polynomial interpolation method at the atmospheric temperature of 300 K. The maximum absolute error and full width at half maximum error of Rayleigh scattering spectrum are 22 MHz and 337 kHz, respectively. In order to verify the results, a numerical simulation of Rayleigh scattering spectrum based on standard atmosphere model and S6 model is performed. The detection uncertainty of atmospheric temperature is up to 0.8 K. As SNR (signal to noise ratio) is 10, the detection distance is 4.5 and 7.9 km at day-time and night-time, respectively. The research provides a new solution of filter system for the achievement of all-time, high-precision, and absolute detection of atmospheric temperature in the future. In meteorology, in order to investigate the temporal and spatial characteristics, the change rules and physical mechanism of weather processes, the temperature in the boundary layer of urban atmosphere is absolutely detected, where human activities are frequent and the changes of weather elements are obviously at day and night. In addition, the absolute detection method of atmospheric temperature can provide the valid means to research urban heat island, weather forecast for urban environment, and high temperature alert. In environmental studies, the absolute detection of atmospheric temperature can provide the big amount of scientific data for establishment of numerical model and research on air pollution diffusion. There is reference significance for the investigation of filter system of similar lidar. Simultaneously, the scanning filter method provides a feasible solution for the filter system with the characteristics of miniaturization, high anti-interference and high stability in the space-based platform.
Keywords: atmospheric temperature/
Rayleigh scattering spectrum/
hyperspectral lidar/
solid cavity scanning Fabry-Perot interferometer