关键词: La掺杂-TiAl/
晶体结构/
延性/
电子性质
English Abstract
Ductile and electronic properties of La-doped gamma-TiAl systems based on density functional theory
Song Qing-Gong1,2,Zhao Jun-Pu1,
Gu Wei-Feng1,
Zhen Dan-Dan2,
Guo Yan-Rui1,
Li Ze-Peng1
1.Institute of Low Dimensional Materials and Technology, College of Science, Civil Aviation University of China, Tianjin 300300, China;
2.Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11304380) and the Fundamental Research Funds for the Central Universities, China (Grant No. 3122014K001).Received Date:09 November 2016
Accepted Date:10 December 2016
Published Online:05 March 2017
Abstract:Because of the low density, high specific strength and excellent performance at high temperature, -TiAl based alloy has become a new generation of materials in the aeronautic field. However, its poor ductility at room temperature set a limitation to its wide applications. In this paper, the crystal structures, stabilities and ductilities of La-doped -TiAl systems are investigated by using first principles method based on density functional theory, in which Ti or Al is substituted by La and the impurity content values are 1.85 at.%, 2.78 at.%, 4.17 at.%, 6.25 at.%, 8.33 at.% and 12.5 at.%, respectively. The results show that all of the La-doped alloys have good energy stabilities, namely they can be prepared experimentally, when the impurity concentration x of system is less than or equal to 12.5 at.%. And the density of the La-doped system is less than 4.6 gcm-3. La doping induces the lattice parameters and the axial ratio of the alloy system to change. The axial ratio of La-doped system with low impurity concentration (x6.25 at.%) is closer to 1, which is very beneficial to improving the ductility of the materials. It is predicted that the system Ti11LaAl12 would have the best ductility among those of the investigated systems, for its axial ratio is the closest to 1. The electronic effect about the ductility of La-doped system is discussed through the comparisons of the populations, charge densities and densities between the states of systems Ti11LaAl12 and Ti12Al12. It is found that the system Ti11LaAl12 presents a state of electron redistribution in valence electron orbitals of Al and Ti due to an atom of titanium substituted with that of lanthanum. The charge numbers of Ti-d and Al-p orbitals and the numbers of electrons can be delocalized by reducing the p-d orbital hybridization. Thus, the intensity of p-d orbital hybridization is weakened, the resistance of dislocation movement is reduced, and the ductility of TiAl systems can be improved. Actually, the new electron redistribution shows different properties of some chemical bonds, in which some of covalent AlTi bonds are replaced by ionic AlLa bonds and some of covalent TiTi bonds are replaced by metallic TiLa bonds. Therefore, the covalent and directional properties of chemical bonds are reduced distinctly while the metallic properties of materials are strengthened. The average intensity of AlAl bonds decreases and those of AlTi and TiTi bonds are increased in the La-doped -TiAl system (Ti11LaAl12). As a result, the differences between the three kinds of chemical bonds diminish and the degree of isotropy of the crystal structure increases, which can greatly improve the ductility of -TiAl alloy.
Keywords: La-doped -TiAl/
crystal structure/
ductility/
electronic property