关键词: 二极管抽运/
高重复频率/
纳秒激光器/
高光束质量
English Abstract
A 100 Hz 3.31 J all-solid-state high beam quality Nd:YAG laser for space debris detecting
Fan Zhong-Wei1,2,4,Qiu Ji-Si1,2,3,
Tang Xiong-Xin1,2,3,
Bai Zhen-Ao1,2,3,
Kang Zhi-Jun1,2,3,
Ge Wen-Qi1,2,3,
Wang Hao-Cheng1,2,
Liu Hao1,
Liu Yue-Liang1
1.Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing 100094, China;
2.National Engineering Research Center for DPSSL, Beijing 100094, China;
3.Zhongkeheguang Applied Laser Technology Institute Company, Ltd. Tianjin 300304, China;
4.University of Chinese Academy of Sciences, Beijing 100049, China
Fund Project:Project supported by the Special Fund for Research on National Major Research Instruments and Facilities of the National Natural Science Fundation of China (Grant No. ZDYZ2013-2), China Innovative Talent Promotion Plans for Innovation Team in Priority Fields (Grant No. 2014RA4051), and the Youth Innovation Promotion Association, Chinese Academy of Sciences.Received Date:28 September 2016
Accepted Date:13 December 2016
Published Online:05 March 2017
Abstract:With the rapid development of space technology, human activities into space are increasing, thereby producing lots of space debris. And the space debris impact is the major cause for the mechanical damage to the space crafts and the main factor affecting the service life; it even endangers the life safety of the astronauts working outside the spacecraft and pose a threat to the astronomical observation and studies. Thus, the monitoring and early warning of space debris are gradually attracting wide attention. Obviously, laser detection as a good-directivity and strong anti-jamming active detecting means has a unique advantage in terms of a round-the-clock detection. Therefore, the developing of debris-detecting laser beam source becomes the most direct and effective means for increasing the space debris detection accuracy. The laser detecting ability is restricted by the laser beam quality, the pulse energy and the repetition frequency at the same time. The beam quality could affect the ability to detect and recognize space target. The bigger the laser pulse energy, the higher the repetition frequency and the smaller the detectable debris, the stronger the detecting ability will be. A good detection effect could be achieved at 80-100 Hz laser pulse repetition frequency. A further increase of the repetition frequency will greatly increase the difficulty and cost accordingly but the improvement of the detection performance is not obvious at all. Thus, repetition frequency around 100 Hz becomes the best choice for laser space debris detection. Based on the laser diode side-pumped rod-shaped amplifier, a high-repetition-frequency and high-beam-quality of joule level Nd:YAG nanosecond laser for space debris detection is developed in this work. The laser adopts MOPA structure, mainly including single longitudinal mode, pre-amplifier unit, SBS phase-conjugate beam control unit and energy extraction unit. In the energy extraction unit, beam splitting-amplifying-combining is adopted for reducing the thermal effect on beam quality by reducing the working current of the amplifier. Under the condition of 100 Hz high repetition frequency and 10.73 J single pulse energy injected by the single longitudinal mode seed, 3.31 J output energy is gained. The output laser beam has a 4.58 ns pulse width, far field beam spot of 2.12 times the value of the diffraction limit, and 0.87% energy stability (RMS).
Keywords: diode-pumped/
high repetition/
nanosecond laser/
high beam quality