关键词: 磁光效应/
表面等离激元/
光子晶体
English Abstract
Localized surface plasmon resonance and the size effects of magneto-optic rods
Huang Zhi-Fang1,2,Ni Ya-Xian1,2,
Sun Hua1,2
1.College of Physics, Optoelectronics and Energy, Suzhou University, Suzhou 215006, China;
2.Jiangsu Key Laboratory of Thin Films, Suzhou 215006, China
Fund Project:Supported by the Natural Science Foundation for the Youth of Jiangsu Province (Grant No. BK20130284).Received Date:15 December 2015
Accepted Date:10 March 2016
Published Online:05 June 2016
Abstract:Localized surface plasmon resonance of cylindrical magneto optical particles provides an important mechanism for the formation of chiral edge states in two-dimensional magneto-optical photonic crystals. These states are an electromagnetic analogy of the so-called chiral edge state's (CESs) in a quantum Hall system where the power transmission is unidirectional due to particular topological properties of the bands. Just like their electronic counterpart, the number of optical CESs in the band gap opened by an applied magnetic field is determined by the sum of the Chern numbers of the lower bands. For a two-dimensional photonic crystal composed of ferrite rods magnetized along their axis, the coupling of the localized surface plasmon resonance states of each rod results in a narrow flat band-gap, which contains one-way edge modes arising from the circulation of the energy flow around each rod excited by the resonance with broken time-reversal symmetry. So far the interpretation of the resonance-related chiral edge states are based on the long-wavelength approximation of the localized surface plasmon resonance of an individual magneto-optical particle. Though the results agree with the experimental results qualitatively, an obvious quantitative deviation is still obvious. In this work we apply the scattering theory to analyze the resonance condition and the features of both the far-field and the near-field at resonance for cylindrical magneto-optical particles. Our calculation shows that the splitting of scattering peaks of different orders will occur due to the magneto-optical effect. Such a split is observed between an (+n)-peak and an (-n) peak, as a sign of the broken time-reversal symmetry, and also between peaks of lower-order and higher-order. Another important feature is the simultaneous occurring of the far-field resonance and the near-field resonance, where the latter is characterized by a peak of energy-flow circulation around the particle. Based on this model the effects of particle size on the resonance peaks are discussed. It is shown that the resonance peaks are moved and broadened with the particle size increasing. The results explain the obvious deviation of the position of the resonance band-gap from the predicted frequency according to the previous long-wavelength approximation. Furthermore, the calculation of a particle of moderately-large size (nearly one-tenth of the incident wavelength) demonstrates the appearance of higher-order modes up to n=4 circling around the particle surface. This implies that these higher-order modes may also make non-trivial contribution to the formation of the flat band-gap observed in a photonic crystal of ferrite-rods and affect the behaviours of the chiral-edge state existing in such a gap. Particularly, it may be helpful in realizing the multimodes of chiral edge states in magneto-optical photonic crystals.
Keywords: magneto-optic effects/
surface plasmon/
photonic crystals