可见光显微镜使我们能够看到像活体细胞内的小器官那样小的微小物体。然而,它依然无法用来观测固体中电子在原子间的分布情况。最近,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室孟胜研究组与罗斯托克大学极端光子学实验室以及德国马克斯普朗克量子光学研究所的研究人员合作,开发了一种新型的光显微镜,即“激光皮米显微镜(laser picoscopy)”,用以实现对固体中价电子分布的实时观测。
该技术是通过跟踪在激光辐照下固体发射的高次谐波来实现的。高次谐波是在超强激光场驱动下介质的一种极端非线性行为,其表现为材料发射出远紫外的相干谐波辐射。高次谐波对材料中电子尤其是价电子的状态非常敏感。因此对于固体材料,它不仅可以用于产生具有极限性能的超短激光脉冲,也可以用作一种探测材料内部电子性质的有效手段。作为全光学的探测方法,利用高次谐波的固体材料测量不需要高的真空条件以及对样品的解理;同时,由于高次谐波脉冲时间短,产生的热效应少,所以对样品几乎没有损伤。相比于传统的探测手段,其时空分辨率更高,因此被逐渐应用到对电子能带结构、拓扑性质以及动态电导率等性物性的测量上。
因为X射线、电子束等探针仅对材料的总电子分布敏感,利用传统方法实现价电子分布的直接空间成像依然很有难度,而高分辨的测量更是巨大的挑战。利用高次谐波在测量上的优势,孟胜研究组与实验研究人员合作,使用强大的激光闪光照射晶体材料薄膜,激光脉冲驱动晶体中的电子快速摆动。当电子与周围的电子反弹时,它们在光谱的极紫外部分发生高次谐波辐射。通过分析这种辐射的性质,可以制作一系列具有几十皮米分辨率的图片来说明电子云是如何分布在固体晶格中的原子之间的(图1)。
该研究团队利用自主发展的含时密度泛函理论方法,构建了强光场作用下电子-势垒的散射图像,实现了高次谐波对价电子空间分布的重构(图2)。他们发现,在光场强度达到一定程度时,由于强场对势垒强烈的压制作用,固体中电子呈现一定的准自由行为,由此建立起高次谐波产率与势场分布的关系,通过对高次谐波强度的拟合,固体价电子的势场以及电荷密度的空间分布被建立起来。
图1. 固体价电子的激光显微照相术。a)是实验装置图,b)是MgF2晶体的高次谐波谱),c)是高次谐波截止频率与激光场的关系,其斜率即对应于体系中的最小离子半径,d)探测到的不同原子或离子的半径(蓝色)和经验值(红色、黄色)的比较。
图2.激光辐照下MgF2晶体中的电子动力学。上图为激光场的波形,下图为不同时刻电子密度分布的变化。
值得注意的是,由于高次谐波具有极高的截止能量,这种价电子的空间成像可以达到皮米量级的超高空间分辨率(图3)。因此,借助高次谐波,不同元素价电子的空间分布尺度也能够被精确探测。结果表明,高次谐波对价电子的空间成像不依赖于驱动光的波长,这意味着这种测量手段拥有涵盖从太赫兹波段到可见光波段的广泛光源适应性。
图3.a)实验重构的价电子密度分布,b)理论计算的价电子密度分布。c)为对角线方向电子密度的轮廓。
此项研究为开发新型激光显微镜铺平了道路,使物理学家、化学家和材料科学家能够以前所未有的分辨率窥视微观世界的细节,深入理解并最终控制材料的化学和电子性质。能够探测价电子密度的显微镜也可以更好地为计算固态物理建立实验基准。相关研究成果发表在Nature 583, 55 (2020)上。
此外,由于高次谐波谱的形貌及其在外界扰动下的变化蕴含着材料内部丰富的电子动力学信息,人们可以通过改变光场波形实现对载流子运动的超快调控。孟胜研究组的博士生关梦雪等利用自主发展的含时密度泛函理论方法,通过调节双色光的强度、相位差等参数实现了对二维材料MoS2中电子动力学及高次谐波产生的阿秒尺度超快调控(图4)。他们的研究表明,二维材料中的电子波包动力学及谐波辐射对光场波形高度敏感,通过改变双色光之间的相位差,载流子在动量空间中的运动轨迹可以被超快地调控,并且谐波截断能可以随光场幅值线性增加,同时伴随着谐波产率及谱形貌的改变。当双色光相位差为π时,可以在单层MoS2中得到一个光滑连续、展宽较大的高次谐波谱,从而得到一个能量范围在极紫外区域(~20 eV)的近孤立的超短脉冲。虽然二维材料中高次谐波产生截断能对光强的依赖关系同体相材料相一致,但其谐波发射的时频特征却和原子气体中的情况相同,说明二维材料的结构特征介于体相及气相之间,因此提供了一个独特的研究平台。该工作发表在Appl. Phys. Lett. 116, 043101 (2020),并被选为封面论文。这些工作得到科技部重点研发计划(2016YFA0300902)和国家自然科学基金委(91850120, 11774396, 11934004)的资助。
图4.《Appl. Phys. Lett.》封面。图中展示的是二维固体在相位差分别为π/2和π的双激光脉冲下(黑线)的辐射谱随时间的变化。
Appl. Phys. Lett. 116, 043101 (2020).pdf
Nature 583, 55 (2020).pdf
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
固体中电子的阿秒动力学和激光显微照相
本站小编 Free考研考试/2021-12-27
相关话题/电子 材料 激光 空间 测量
反铁磁金属氮化铬超薄膜的电子态相变研究
超薄导电材料在透明显示、柔性电子皮肤、可穿戴光伏器件等方面具有广泛的应用前景,是应用材料领域争相角逐的前沿领域。现代微电子器件不仅要求这些超薄材料具有优异的导电性和透光性,还要求它们能够具有更为丰富的物理特性,例如磁性、热电性、延展性和抗腐蚀性等,为设计下一代移动智能多功能器件提供备选材料。过渡金属 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27实空间新型拓扑磁激发在磁性二维材料以及人工反铁磁薄膜中的发现与调控
兼具温度、电流、磁场等多物理场协同调控的高分辨洛伦兹透射电镜在实空间探索纳米尺度新型磁畴结构,原位揭示与磁相关的新奇物理现象微观机制以及自旋原理性器件应用方面发挥着越来越重要的作用。中国科学院物理研究所/北京凝聚态物理国家研究中心磁学国家重点实验室M07组张颖研究团队在沈保根院士、磁学实验室以及物理 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27数据驱动具有负泊松比二维材料及具有量子反常霍尔效应二维材料异质结的高通量计算取得重要进展
随着科技的发展,传统电子元器件在不断微型化过程中面临着诸多挑战。寻找新材料、新结构和新原理器件是推动信息化器件进一步发展的关键。近年来,二维材料由于仅有单个或几个原子层厚度,量子效应凸显,呈现出许多区别于传统三维材料的新奇物性和卓越性能,有望成为新原理型光、电、磁等器件的核心材料。因此,探索具有优异 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27高压诱发的量子自旋液体材料的Mott相变和超导
高压、低温和强磁场等极端条件在探索新材料揭示新物理现象方面发挥着越来越重要的作用。研究材料在这些极端条件下的构效关系,能揭示许多奇异且具有潜在应用价值的物理现象。中国科学院物理研究所/北京凝聚态物理国家研究中心极端条件物理重点实验室靳常青团队长期开展新兴功能材料在综合极端条件下的构效关系研究,自主发 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27二维精雕,游刃有余:一种二维材料图案化的直写加工技术
二维材料具有原子级厚度和非常高的比表面积,并且由于所有原子处于表面导致其表面对表面吸附和外界环境十分敏感。二维半导体材料在电子学与光电子学器件领域具有广阔的应用前景,有望取代硅成为下一代小型化电子器件的核心材料。为了实现此类应用,首先需要对材料进行剪裁。通过常规的微纳加工技术,包括光刻和反应离子干法 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27相对论激光驱动太瓦级可调谐太赫兹脉冲源
太赫兹(THz)辐射在电磁频谱中位于红外波和微波之间,由于其单光子能量低和谱“指纹性”等独特优势,在材料科学、生物医疗和国防安全等领域具有重要应用。太赫兹辐射源是太赫兹科学发展的基础和关键。目前实验室报道的太赫兹脉冲源最大峰值功率在吉瓦(109 W)水平。除了高功率外,许多前沿太赫兹应用(例如太赫兹 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27电子级二维半导体与柔性电子器件
在半导体器件不断小型化以及柔性化的主流趋势下,以二硫化钼(MoS2)等过渡金属硫属化合物(TMDC)为代表的二维半导体材料显示出独特的优势。国际半导体联盟在2015年的技术路线图(International Technology Roadmap for Semiconductors, ITRS)中明 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27二维材料复合光纤实现超高非线性效应
随着光通信技术的发展,光纤已经成为现代信息社会的重要支撑。非线性光纤作为一种特殊用途光纤,不仅在新型光纤通讯技术中有重要应用和发展前景,而且在光波长转换、超快光纤激光和超连续激光等光物理基础和器件研究等领域具有很大应用潜力。然而,传统石英光纤仅表现出非常微弱的奇数阶非线性效应,严重限制了在非线性光学 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27FeSe超导体向列相光电子能谱的精密观测揭示存在未知对称破缺的证据
FeSe 超导体具有简单的晶体结构,在低温下不具有反铁磁长程序, 但在90K以下进入向列序态,在超导温度(Tc)9K以下呈现出超导和向列序共存的状态。因此,FeSe超导体是研究铁基超导体中向列相相关物理以及超导机理的理想体系。 FeSe的众多衍生物,如插层FeSe、KxFe2-ySe2、 (Li,F ...中科院物理研究所 本站小编 Free考研考试 2021-12-27高电压钴酸锂锂离子电池正极材料研究进展
钴酸锂(LiCoO2)是最早商业化的锂离子电池正极材料。由于其具有很高的材料密度和电极压实密度,使用钴酸锂正极的锂离子电池具有最高的体积能量密度,因此钴酸锂是消费电子用锂离子电池中应用最广泛的正极材料。随着消费电子产品对锂离子电池续航时间的要求不断提高,迫切需要进一步提升电池体积能量密度。提高钴酸锂 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27