删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

碘蒸气辅助合成Chevrel相纳米片Mo6S8及其在镁/铝电池中的应用

本站小编 Free考研/2020-05-21

Chevrel相化合物是一种钼基硫族化合物,是由Mo6T8或MxMo6T8组成(M为过渡金属,T为S,Se或Te)。Chevrel相结构中,六个Mo原子位于一个立方体的六个面心,形成一个八面体的Mo6原子簇,八个T原子占据立方体的八个角上,在这些紧密堆积的原子簇之间有较大的三维开放式孔道。由于这种独特的结构,Chevrel相化合物被应用于超导,热电,催化和电池中。自2000年Chevrel相Mo6S8被首次应用于镁电池正极以来,它的应用范围已经被拓宽到几乎所有的二次电池体系。直至今天,Chevrel相Mo6S8仍然是最成功的镁电池正极材料。但是大规模,高质量地合成Chevrel相的Mo6S8纳米材料仍然面临很大挑战。现行的方法包括固相法,熔盐法,自传输高温法,高能球磨法,以及两步溶液法合成都具有能耗大,产物不纯,并且无法控制颗粒生长等问题。目前最常用的固相法,以CuS和MoS2作为硫源,将反应物密封到充满氩气的接头式不锈钢管中,在900摄氏度下反应24小时。但是该方法只能合成微米尺寸的Mo6S8,且由于CuS在高温下会分解产生硫蒸汽并逸出,导致杂质MoS2的生成。
  鉴于此,中国科学院物理研究所/北京凝聚态物理国家研究中心清洁能源实验室E01组毛明磊博士、林泽京博士生,在索鎏敏副研究员的指导下,利用碘的气相传质反应合成了大规模、高纯度的Mo6S8纳米片。利用Cu,Mo,以及MoS2作为反应物,避免了反应物的分解,以及硫蒸汽的逸出。碘用来调节固相反应的动力学,降低了反应温度和时间,并且引发Mo6S8进行择优平面生长形成纳米片。作为一种典型的三维材料,纳米片状的Mo6S8被第一次获得。在镁电池和铝电池中,该Mo6S8纳米片比用传统方法合成的微米颗粒,具有更快的离子嵌入动力学和更好的电化学性能。该研究结果近日发表在《ACS Nano》上(ACS Nano,2019,DOI: 10.1021/acsnano.9b08848),文章题为Iodine Vapor Transport-Triggered Preferential Growth of Chevrel Mo6S8 Nanosheets for Advanced Multivalent Batteries。文章链接: https://pubs.acs.org/doi/pdf/10.1021/acsnano.9b08848
  研究团队首先探究了最佳的合成条件,通过对不同反应温度和反应时间下的产物进行XRD测试,发现800摄氏度,24小时是合成的最佳条件。同时,进一步对反应路径的研究发现,碘蒸汽首先和铜反应生成CuI,然后再和Mo单质以及MoS2反应生成中间产物Cu2Mo6S8。将该中间产物进一步酸洗生成目标产物Mo6S8纳米片。然后作者利用XRD,SEM,TEM,STEM等手段确认了合成的Mo6S8纳米片的晶相和形貌。随后将Mo6S8纳米片应用到镁电池和铝电池中,Mo6S8纳米片展现了更快的反应动力学,优异的循环稳定性,以及良好的低温性能。除此之外,研究团队还利用非原位的XRD,EDS,和XPS证明了Mo6S8纳米片在镁离子嵌入脱出过程中发生了明显的相变,并且电荷转移首先从硫离子开始发生,然后过渡到钼离子。除了可以应用到电池材料中,Mo6S8纳米片因其具有的高比表面积,显著的各向异性,以及独特的表面性质,还可以广泛应用于超导,热电和催化中。碘的气相传质反应将为大规模合成无机化合物提供一种全新的路径。
  相关工作得到了国家重点研发计划(2018YFB0104400)、国家自然科学基金(51872322; 21905299)、中国博士后科学基金(2019TQ0346)、以及壳牌公司(PT76419)的支持。
图1. 碘气相传质反应合成Mo6S8纳米片的示意图。
图2. 利用XRD探究合成Cu2Mo6S8的最优条件以及反应路径。
图3. Mo6S8纳米片的表征
图4. Mo6S8纳米片在镁电池和铝电池中的电化学性能


acs nano.pdf
相关话题/纳米 材料

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 袖里藏乾坤:高压合成准1维新材料及维度调控的量子演生现象
    对于一维导电体系,电子的运动受维度限制只能沿前后两个方向运动,因此一维体系的所有电子相互关联,表现为集体运动的形式,不再有费米液体理论所描述的准粒子存在,只能由Luttinger液体理论来描述。由于一维体系电子的集体运动,Umklapp scattering(倒逆散射)效应对一维导电体系的电学行为具 ...
    本站小编 Free考研 2020-05-21
  • 硼氮纳米管的超快动力学研究和高时空分辨电镜研发取得进展
    低维纳米材料中受激电子诱导的结构演变研究,揭示了电-声子相互作用过程的特征时间尺度。作为典型的管状一维材料,硼氮纳米管(BNNT)具有卓越的热力学性能、化学稳定性和生物兼容性而受到广泛关注。超快结构动力学分析可以揭示其中的重要物理特性以及蕴含的物理机制,为发展新型纳米光电子器件提供重要物理信息。值得 ...
    本站小编 Free考研 2020-05-21
  • 钙钛矿纳米线中热极化子取得进展
    有机无机杂化钙钛矿具有非常优异的光电性质,在太阳能电池、LED显示、低阈值激光器等领域有重要的应用前景。与其他材料相比,钙钛矿优异的光电性质如载流子迁移率高,发光强,光吸收系数高等与该材料本身具有缺陷容忍率的特性有关。半导体中电子空穴形成的自由激子、缺陷形成的束缚激子,以及晶格振动形成的声子,这些准 ...
    本站小编 Free考研 2020-05-21
  • 新型二维原子晶体材料单层二硒化钒的“一维图案化”及其功能化
    二维原子晶体材料的功能化对实现其在光电、催化、新能源以及生物医学等领域中的应用具有重要意义。在实现二维材料功能化方面,结构图案化调控是其中一个重要手段。之前,人们利用电子/离子束刻蚀、元素掺杂等手段实现了二维材料的图案化。图案化的二维材料则呈现出了许多新的物理性质,例如“纳米网状”石墨烯的半导体特性 ...
    本站小编 Free考研 2020-05-21
  • 高压制备大线性磁电效应与磁场诱导铁磁-铁电性材料
    线性磁电效应是指磁场(H)感生电极化(P)或电场(E)感生磁化的现象,感生的电极化与磁化强度可用公式P = αH 或M = αE来表示,其中α定义为线性磁电系数。由于磁场可调控电极化以及电场可调控磁性质,线性磁电效应材料作为一种重要的磁电耦合多功能材料获得了广泛研究。在实际应用中,人们期望材料在较为 ...
    本站小编 Free考研 2020-05-21
  • 在一种单层铁磁材料中发现外尔节线
    最近十几年,能带的拓扑理论发展迅速。目前,人们已经发现了多种拓扑能带结构,比如狄拉克锥(Dirac cone)、外尔锥(Weyl cone)以及狄拉克/外尔节线(Dirac/Weyl nodal line)。这类拓扑能带结构会带来奇特的物理现象,比如手性反常、超大磁阻等。然而,除了石墨烯早已被证实拥 ...
    本站小编 Free考研 2020-05-21
  • 发现一类不同寻常的铜基高温超导新材料
    铜氧化物高温超导体(简称铜基超导)是常压条件下迄今转变温度最高的超导材料体系,对它的微观机制破解入选《Science》125个重大科学难题,目前依然是凝聚态物质科学最大的谜团和挑战之一。由于铜基超导体很强的Jahn Teller效应和层间库伦作用,沿c方向的铜氧键长大于铜氧平面内的键长,导致基本电子 ...
    本站小编 Free考研 2020-05-21
  • 基于纳米环磁性隧道结的自旋随机数发生器
    在当今大数据时代,各行各业对随机数的需求日益增加,例如,通信领域的信息加密、科学研究中的统计模拟、博彩行业的随机分配、安全领域的随机密钥与身份验证,都离不开随机数的运用。在理想情况下,随机数序列应该是一个彼此之间完全独立的,“0”和“1”(二进制)以相同概率随机分布的数字串。而传统的依靠计算机程序伪 ...
    本站小编 Free考研 2020-05-21
  • 4.6V高电压钴酸锂锂离子电池正极材料研究进展
    钴酸锂(LiCoO2)是最早商业化的锂离子电池正极材料。由于其具有很高的材料密度和电极压实密度,使用钴酸锂正极的锂离子电池具有最高的体积能量密度,因此钴酸锂是消费电子市场应用最广泛的正极材料。随着消费电子产品,特别是5G手机等,对锂离子电池续航时间和体积大小的要求不断提高,迫切需要进一步提升电池体积 ...
    本站小编 Free考研 2020-05-21
  • 室温下非晶金属纳米颗粒的类液体行为
    作为目前已经被大量市场化的应用材料,低维材料表现出各种优异性能,在半导体、光学、医药、能源、信息技术等领域及人们日常生活用品中都扮演着重要的角色。同时凝聚态物理诸多前沿问题也都与低维材料及其制备工艺息息相关。然而,目前对于低维非晶材料的研究及相关报道还很少。2007年,Ediger利用薄膜沉积技术获 ...
    本站小编 Free考研 2020-05-21