1. 北京科技大学能源与环境工程学院,北京 100083
2. 北京科技大学节能与环保北京高校工程研究中心,北京 100083
收稿日期:
2017-11-06修回日期:
2017-12-01出版日期:
2018-08-22发布日期:
2018-08-15通讯作者:
苏庆泉基金资助:
国家自然科学基金青年项目;中国博士后科学基金;高校基本科研业务费Thermophysical properties and corrosivity of CaCl2-LiBr-LiNO3-KNO3/H2O working pair
Na LI1, Chunhuan LUO1,2, Qingquan SU1,2*1. School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
2. Beijing Engineering Research Center for Energy Saving and Environmental Protection, University of Science and Technology Beijing,
Beijing 100083, China
Received:
2017-11-06Revised:
2017-12-01Online:
2018-08-22Published:
2018-08-15Contact:
SU Qing-quan 摘要/Abstract
摘要: The new working pair of CaCl2?LiBr?LiNO3?KNO3 (mass ratio 16.2:2:2:1)/H2O was systematically evaluated in terms of the crystallization temperature and the saturated vapor pressure. The corrosion rates of the carbon steel, 316L stainless steel and copper in CaCl2?LiBr?LiNO3?KNO3/H2O were measured with a weight loss method. The results showed that under the same refrigeration conditions, the temperature required for collecting solar energy or the generation temperature of CaCl2?LiBr?LiNO3? KNO3/H2O for a single-stage absorption refrigeration cycle decreases by 6.2℃ comparing with LiBr/H2O. The corrosion rates of 316L and copper are low enough for practical applications.
引用本文
李娜 罗春欢 苏庆泉. CaCl2-LiBr-LiNO3-KNO3/H2O工质对的热物性和腐蚀性[J]. 过程工程学报, 2018, 18(4): 764-768.
Na LI Chunhuan LUO Qingquan SU. Thermophysical properties and corrosivity of CaCl2-LiBr-LiNO3-KNO3/H2O working pair[J]. Chin. J. Process Eng., 2018, 18(4): 764-768.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217382
http://www.jproeng.com/CN/Y2018/V18/I4/764
参考文献
[1] XU Z Y, WANG R Z. Absorption refrigeration cycles: Categorized based on the cycle construction [J]. International Journal of Refrigeration, 2016, 62, 114-136. [2] 杨俊斌, 耿世彬. 太阳能空调的技术现状与发展 [J]. 洁净与空调技术, 2017, 1: 95-99. YANG J B, GENG S B. Current Situation and Development of Solar Air-conditioning Technology [J]. Contamination Control & Air-conditioning Technology, 2017, 1: 95-99. [3] BOONRIT P. Performance Test of a Small Size LiBr-H2O Absorption Chiller [J]. Energy Procedia, 2014, 56, 487-497. [4] LI Z Y, YUE J, LIU J P. Thermodynamic study of a novel solar LiBr/H2O absorption chiller [J]. Energy and Buildings, 2016, 133, 565-576. [5] GRAZIA L. Solar systems integrated with absorption heat pumps and thermal energy storages: state of art [J]. Renewable and Sustainable Energy Reviews, 2017, 70, 492-505. [6] XU Z Y, WANG R Z, WANG H B. Experimental evaluation of a variable effect LiBr–water absorption chiller designed for high-efficient solar cooling system [J]. International Journal of Refrigeration, 2015, 59, 135-143. [7] N’TSOUKPOE K E, PERIER-MUZET M, LE PIERRE`S N, et al. Thermodynamic study of a LiBr–H2O absorption process for solar heat storage with crystallisation of the solution [J]. Solar Energy, 2014, 104: 2-15. [8] ZHENG D X, LI D, HUANG W J, et al. A review of imidazolium ionic liquids research and development towards working pair of absorption cycle [J]. Renewable and Sustainable Energy Reviews, 2014, 37: 47-68. [9] 王如竹, 代彦军. 太阳能制冷 [M]. 北京: 化学工业出版社, 2006, 138. WANG R Z, DAI Y J. Solar energy refrigeration [M]. Beijing: Chemical Industry Press, 2006, 138. [10] VENTAS R, LECUONA A, VEREDA C, et al. Two-stage double-effect ammonia/lithium nitrate absorption cycle [J]. Applied Thermal Engineering, 2016, 94, 228-237. [11] HE Z N, GE H C, JIANG F L, et al. A comparison of optical performance between evacuated collector tubes with flat and semicylindric absorbers [J]. Solar Energy, 1997, 60: 109-117. [12] FLORIDES G A, KALOGIROU S A, TASSOU S A, et al. Modelling and simulation of an absorption solar cooling system for Cyprus [J]. Solar Energy, 2002, 72: 43-51. [13] 李戬洪, 马伟斌. 100 kW太阳能制冷空调系统 [J]. 太阳能学报, 1999, 20(3): 239-243. LI J H, MA W B. 100 kW Solar Refrigeration Air Conditioning System [J]. Journal of Solar Energy, 1999, 20(3): 239-243. [14] 陈东, 谢继红. 热泵技术及其应用[M]. 北京: 化学工业出版社, 2006: 197. CHEN D, XIE J H. Heat Pump Technology and Application [M]. Beijing: Chemical Industry Press, 2006: 197. [15] 罗春欢, 张渊, 苏庆泉. LiBr-[BMIM]Cl/H2O工质对的饱和蒸气压、结晶温度和腐蚀 [J]. 化工学报, 2016, 67(4): 1110-1116. LUO C H, ZHANG Y, SU Q Q. Saturated vapor pressure, crystallization temperature and corrosion of LiBr-[BMIM]Cl/H2O working fluid [J]. CIESC Journal, 2016, 67(4): 1110-1116. [16] 刘光启, 马连湘, 刘杰. 化学化工物性数据手册: 无机卷 [M]. 北京: 化学工业出版社, 2006, 17. LIU Q G, MA L X, LIU J. Chemical and chemical properties data sheet: inorganic volumes [M]. Beijing: Chemical Industry Press, 2006, 17. [17] LUO C H, SU Q Q, MI W L. Solubilities, Vapor Pressures, Densities, Viscosities , and Specific Heat Capacities of the LiNO3/H2O Binary System [J]. Journal of Chemical & Engineering Data, 2013a, 58: 625-633. [18] LUO C H, SU Q Q. Corrosion of carbon steel in concentrated LiNO3 solution at high temperature [J]. Corrosion Science, 2013b, 74: 290-296. [19] ATHERTON S. Solubilities of inorgnic and organic compounds [M]. New York, D.Van Nostrand Company Inc., 1953 (1): 280. [20] VEREVKIN S, SAFAROV J, BICH E, et al. Study of vapour pressure of lithium nitrate solutions in ethanol [J]. The Journal of Chemical Thermodynamics, 2006, 38: 611-616. |
相关文章 3
[1] | 张宇 田丽亭 岳小棚 王坤. 槽式太阳能集热管内相变微胶囊悬浮液的热力性能分析[J]. 过程工程学报, 2020, 20(3): 276-284. |
[2] | 杨武龙姜洪涛吴靥汝樊皓华炜计建炳. 熔盐在新能源领域的应用[J]. , 2012, 12(5): 893-900. |
[3] | 郝占全陈伟庆Carsten Lippold茅洪祥. 氧化钛对含钛不锈钢连铸保护渣性能的影响[J]. , 2009, 9(3): 514-519. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3086