铁蛋白(Fn)是一种具有独特空腔和孔道结构的内源性蛋白,可以作为天然的药物载体。肿瘤细胞表面通常高表达铁蛋白受体,借助该识别途径可实现药物向肿瘤细胞的靶向递送。然而,铁蛋白受体在肝脏等正常组织也会非特异性表达,影响了铁蛋白向实体肿瘤递送药物的效率。近日,过程工程所生化工程国家重点实验室魏炜研究员团队提出利用仿生矿化策略使铁蛋白表面生长出磷酸钙外壳,借助“隐形”作用避免了肝脏过表达铁蛋白受体产生的截留效应,提高了实体肿瘤的靶向能力。该体系还可以协同调控实体肿瘤内微环境,并可按需装载不同种类的抗肿瘤药物,在多种小鼠模型上显著提高治疗效果。相关工作发表于Advanced Materials上(DOI: 10.1002/adma.202107150)。
该团队首先收集临床样本,通过免疫荧光染色证实铁蛋白受体在实体肿瘤和肝脏中均有较高的表达水平,并通过实验证实这种非特异性表达会带来肝脏的截留效应,降低铁蛋白向实体肿瘤的富集。为了解决上述难题,研究团队提出了仿生矿化的新策略,在铁蛋白表面原位生长出生物安全性好的磷酸钙“隐形外壳”。以此获得的矿化铁蛋白(Fn@CaP)静脉注射后成功屏蔽了肝脏中铁蛋白受体的识别作用,显著降低了肝脏的截留效应,并增加了向实体肿瘤的富集。
图 1肝脏对铁蛋白的截留效应、Fn@CaP的构建及其靶向性分析。(a)肿瘤和肝脏组织铁蛋白受体表达水平的免疫荧光分析(标尺:左图2 mm;右图100 μm);(b)Fn的体内分布成像;(c)Fn和Fn@CaP的TEM图像(标尺:30 nm);(d)Fn@CaP的元素分布(标尺:10 nm)和能谱分析;(e)Fn@CaP的体内分布成像;(f)Fn和Fn@CaP的肿瘤和肝脏荧光比值变化曲线
当Fn@CaP到达实体肿瘤后,还可以显著调节肿瘤微环境。首先,肿瘤细胞代谢产生的乳酸使得磷酸钙外壳溶解,这个过程会消耗氢离子,进而有效改善肿瘤酸性微环境。其次,酸性微环境的改善可以促进M2型巨噬细胞向M1型极化,从而改善肿瘤免疫抑制微环境。另外,磷酸钙外壳溶解产生的大量钙离子还可以进一步促进肿瘤的钙化。
图 2 仿生矿化铁蛋白肿瘤微环境调节分析。(a)小鼠肿瘤组织多光谱成像图及其对应的pH值统计;(b)瘤内M1和M2细胞比例的流式分析;(c)小鼠瘤内钙化的CT成像及信号统计
除了上述功能,Fn@CaP载体还可以按需装载不同的抗肿瘤药物。例如,Fn内腔可以基于原位成核方式高效装载化疗药物三价砷,在患者来源的异种移植瘤(PDX)模型中有效抑制肿瘤的生长。进一步,磷酸钙外壳可通过配位方式高效负载光敏剂吲哚菁绿(ICG),借助化疗和光热治疗的联合,在PDX模型中完全抑制难治型肿瘤的生长。
图 3 Fn@CaP按需装载不同药物后在PDX模型中的药效分析。(a)内腔装载三价砷的Fn@CaP用于PDX治疗的药效评价示意图;(b)小鼠肿瘤生长曲线;(c)小鼠肿瘤重量统计;(d)小鼠生存曲线;(e)外壳装载ICG且内腔装载三价砷的Fn@CaP用于难治型PDX治疗的药效评价示意图;(f)小鼠肿瘤生长曲线;(g)小鼠生存曲线
近五年,过程工程所生化工程国家重点实验室魏炜研究员提出了仿生剂型工程的新策略,基于蛋白、细菌、细胞等体内组分发现和创制了一系列仿生递送新剂型,借助固有的天然路径实现体内的精准递送,在动物模型上成功用于靶向治疗、免疫治疗和个体化治疗,并且部分剂型已通过医院伦理批准进入个体化临床前和临床研究。相关工作相继发表于Nat Nanotechnol 2021, doi: 10.1038/s41565-021-00980-7、Nat Biomed Eng 2021, 5, 414、Nat Biomed Eng 2021, 5, 968、Sci Transl Med,2021, 13, eabb6981、Sci Adv 2021, 7, eabd7614、Sci Adv 2021, 7, eaba2458、Sci Adv 2020, 6, eaay7735、Sci Adv 2019, 5, eaaw3192、Nat Commun 2021, 12, 6399、Nat Commun 2017, 8, 14537、Nat Commun 2019, 10, 5165、Adv Mater 2020, 32, 2002085、Adv Mater 2020, 32, 2002940等期刊上。
生化工程国家重点实验室博士生王昌龙为本论文第一作者,魏炜研究员为通讯作者。该工作得到了国家自然科学基金和国家重点研发计划项目的支持。
(生物剂型与生物材料研究部)
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
仿生矿化铁蛋白用于实体肿瘤靶向递送研究取得新进展
本站小编 Free考研考试/2022-01-01
相关话题/肿瘤 药物 工程 环境 细胞
过程工程所发布自主研发离散模拟软件
过程工业自主工程软件的缺失已成为掣肘其高效智能绿色发展的一大瓶颈,也是该领域的卡脖子问题之一。基于多尺度方法基础研究的多年成果,日前,过程工程所自主研发的离散模拟软件DEMms正式发布。该软件可实现万核以上大规模异构并行计算,计算颗粒数可超十亿级,对应的物理颗粒数超万亿级。图1 DEMms软件界面与 ...中科院过程工程研究所 本站小编 Free考研考试 2022-01-01过程工程所利用非晶中空多壳层纳米材料实现高效光热水净化
仅利用太阳能即可实现高效水净化,光热蒸水被视为一种获得饮用水的绿色新途径,其核心为光热界面材料。近期,过程工程所开发了一种具有中空多壳层结构(Hollow Multishelled Structures, HoMSs)的非晶纳米复合物,表现出优异的光热蒸水性能。研究表明,该材料可以有效提升光热转换以 ...中科院过程工程研究所 本站小编 Free考研考试 2022-01-01过程工程所开发新型钠离子电池聚阴离子型磷酸盐正极材料
钠离子电池因其原料丰富、价格低廉,且与锂离子电池技术高度兼容等诸多优点,已成为下一代大规模储能系统最有潜力的电池技术之一。近日,过程工程所绿色化工研究部赵君梅研究员团队与四川大学磷基功能材料与新能源实验室、中国科学院物理研究所清洁能源团队合作,在钠离子电池聚阴离子磷酸盐正极的组成设计和性能优化方面取 ...中科院过程工程研究所 本站小编 Free考研考试 2022-01-01用于协同破坏肿瘤线粒体的光响应型颗粒研究取得新进展
线粒体是细胞的能量工厂,破坏肿瘤细胞中的线粒体是抗肿瘤治疗的新策略。近日,过程工程所生化工程国家重点实验室与中国科学院大学化学科学学院合作,构建了光响应型颗粒剂型,实现递送光致产酸分子,在肿瘤细胞内促使大量自由基产生和大量钙离子内流,以此造成线粒体氧化应激与钙离子过载。通过上述破坏线粒体的协同机制实 ...中科院过程工程研究所 本站小编 Free考研考试 2022-01-01过程工程所在外场强化传质稳定锂负极界面取得新进展
电动汽车、智能电网、航空航天等领域的飞速发展,对能源存储系统提出了更高要求。随着锂离子电池的广泛应用,锂金属负极因其较高的理论比容量和较低的电化学电位备受关注。然而在电化学沉积或剥离过程中,锂金属负极的体积变化、界面不稳定性以及锂枝晶生长等原因导致的电池使用寿命缩短及安全问题,制约了锂金属电池的大规 ...中科院过程工程研究所 本站小编 Free考研考试 2022-01-01细胞囊泡原位生长纳米晶用于高效清除活性氧和抗炎治疗的研究取得新进展
活性氧自由基(Reactive oxygen species, ROS)的大量产生是体内炎症发生发展过程中的重要环节,发展高效的ROS清除剂并有效富集至炎症部位是提高急性炎症性疾病治疗效果的重要手段。近日,中科院过程工程所生化工程国家重点实验室与上海交通大学医学院附属同仁医院合作,发展了细胞囊泡表面 ...中科院过程工程研究所 本站小编 Free考研考试 2022-01-01过程工程所光伏硅废料“一步法”高效制备硅纳米线电极研究获新进展
硅片是晶硅太阳能电池的基础材料,但其制造过程中会产生40%的硅废料,造成了严重的资源浪费和环境污染。利用光伏硅废料制备锂离子电池负极材料是实现光伏和锂电产业绿色、协同、可持续发展的重要方向。近日,过程工程所绿色冶金与产品工程课题组博士生陆继军,在王志研究员、刘俊昊副研究员等的指导下,利用开发的可控电 ...中科院过程工程研究所 本站小编 Free考研考试 2022-01-01调节性T细胞外泌体智能递送VEGF抗体用于眼底新生血管性疾病联合治疗取得新进展
基于可转化的材料组分和巧妙的设计思想,创建智能递送系统,是提高已批准药物疗效的重要策略。近日,中国科学院过程工程研究所生化工程国家重点实验室与北京朝阳医院、澳大利亚昆士兰大学合作,基于调节性T细胞(Treg)来源的外泌体巧妙负载了血管内皮生长因子(Vascular Endothelial Growt ...中科院过程工程研究所 本站小编 Free考研考试 2022-01-01过程工程所开发“一步机械化学法”快速制备钠电池正极材料
储能技术是可再生能源发电并网和智能电网应用普及的核心技术,也是实现我国碳中和碳达峰目标的关键技术之一,尤以电化学储能为突出形式。近日,过程工程所与中国科学院物理研究所清洁能源团队合作,在钠电池正极材料的规模化制备研究中取得重要进展,开发出“一步机械化学法”快速制备钠电池聚阴离子正极材料氟磷酸钒钠。这 ...中科院过程工程研究所 本站小编 Free考研考试 2022-01-01过程工程所在液-液萃取塔传质强化理论和应用领域研究取得新进展
液液萃取是一种重要的化工分离手段,萃取塔因其密闭性强、占地面积小等优点,在核化工、湿法冶金、废水处理、石油化工领域得到广泛的应用。近日,过程工程所在液液萃取塔的传质强化理论和应用研究中取得新进展。研究人员通过将径向旋转流场和轴向穿越流场进行耦合形成复合流场,强化了液-液相间传质过程,开发出“搅拌-脉 ...中科院过程工程研究所 本站小编 Free考研考试 2022-01-01