于若男2,
潘勉4,
汪祖民2,,
1.浙江理工大学信息学院 杭州 310018
2.大连大学信息工程学院 大连 116622
3.五邑大学智能制造学部 江门 529020
4.杭州电子科技大学电子信息学院 杭州 310018
基金项目:国家自然科学基金(61301258, 61271379),中国博士后科学基金(2016M590218),浙江省自然科学基金重点项目(LZ21F010002)
详细信息
作者简介:王洪雁:男,1979年生,****,博士,研究方向为阵列信号处理、机器视觉、深度学习
于若男:女,1995年生,硕士,研究方向为阵列信号处理
潘勉:男,1985年生,讲师,博士,研究方向为阵列信号处理、统计学习
汪祖民:男,1975年生,教授,博士,研究方向为信号处理、机器学习
通讯作者:汪祖民 wangzumin@dlu.edu.cn
中图分类号:TN911.7; TP391计量
文章访问数:515
HTML全文浏览量:181
PDF下载量:94
被引次数:0
出版历程
收稿日期:2020-12-15
修回日期:2020-12-23
网络出版日期:2021-02-27
刊出日期:2021-10-18
Off-grid DOA Estimation Method Based on Covariance Matrix Reconstruction
Hongyan WANG1, 2, 3,Ruonan YU2,
Mian Pan4,
Zumin WANG2,,
1. School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
2. College of Information Engineering, Dalian University, Dalian 116622, China
3. Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China
4. School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
Funds:The National Natural Science Foundation of China(61301258, 61271379), China Postdoctoral Science Foundation(2016M590218), The Key Projects of Natural Science Foundation of Zhejiang Province (LZ21F010002)
摘要
摘要:针对稀疏表示模型中网格失配导致波达方向角(DOA)估计存在较大估计误差的问题,该文提出一种基于协方差矩阵重构的离网格(Off-Grid)DOA估计方法(OGCMR)。首先,将DOA与网格点之间偏移量包含进所构建接收数据空域离散稀疏表示模型;而后基于重构信号协方差矩阵建立关于DOA估计的稀疏表示凸优化问题;再构建采样协方差矩阵估计误差凸模型,并将此凸集显式包含进稀疏表示模型以改善稀疏信号重构性能;最后采用交替迭代方法求解所得联合优化问题以获得网格偏移参数及离网格DOA估计。数值仿真表明,与传统多重信号分类(MUSIC)、L1-SVD及基于稀疏和低秩恢复的稳健MVDR (SLRD-RMVDR)等估计算法相比,所提算法具有较好的角度分辨力以及较高的DOA估计精度。
关键词:波达方向/
离网格/
稀疏表示/
凸优化
Abstract:Focusing on the problem of rather large estimation error in Direction Of Arrival (DOA) estimation caused by grid mismatch in the sparse representation model, an Off-Grid DOA estimation method based on Covariance Matrix Reconstruction (OGCMR) is proposed. Firstly, the offset between the DOA and the grid points is incorporated into the constructed spatial discrete sparse representation model of the received data; After that, based on the reconstructed signal covariance matrix, a sparse representation convex optimization problem associated with DOA estimation can be established; Subsequently, a sampling covariance matrix estimation error convex model is constructed, and then this convex set can be explicitly included into the sparse representation model to improve the performance of sparse signal reconstruction; Finally, an alternating optimization method can be exploited to solve the resultant joint optimization problem to acquire the grid offset parameters as well as the off-grid DOA estimation. Numerical simulations show that, compared with the traditional conventional MUltiple SIgnal Classification(MUSIC), L1-SVD, Sparse and Low-Rank Decomposition based Robust MVDR (SLRD-RMVDR) algorithms and so on, the proposed algorithm has rather better angular resolution and higher DOA estimation accuracy.
Key words:Direction Of Arrival (DOA)/
Off-grid/
Sparse representation/
Convex optimization
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=91c9e6be-9d84-4009-a24b-b327546479f5