删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

属性一致的物体轮廓划分模型

本站小编 Free考研考试/2022-01-03

孙劲光1, 2,,,
李桃1,
董祥军3
1.辽宁工程技术大学 葫芦岛 125105
2.辽宁矿山安全数据工程技术研究中心 葫芦岛 125105
3.齐鲁工业大学(山东省科学院) 济南 250353
基金项目:国家自然科学基金(61702241, 61602226),国家重点研发计划(2018YFB1402902, 2018YFB1403303)

详细信息
作者简介:孙劲光:女,1962年生,教授,研究方向为计算机图像视频处理与多媒体技术、计算机图形学与虚拟现实、数据科学与大数据计算
李桃:女,1986年生,博士生,研究方向为计算机图像视频处理与多媒体技术、数据科学与大数据计算
董祥军:男,1968年生,教授,研究方向为数据挖掘、人工智能和机器学习
通讯作者:孙劲光 sunjinguang@lntu.edu.cn
中图分类号:TN911.73; TP399

计量

文章访问数:185
HTML全文浏览量:107
PDF下载量:17
被引次数:0
出版历程

收稿日期:2020-08-24
修回日期:2021-03-15
网络出版日期:2021-03-25
刊出日期:2021-10-18

Object Contour Partition Model with Consistent Properties

Jinguang SUN1, 2,,,
Tao LI1,
xiangjun DONG3
1. Liaoning University of Engineering and Technology, Huludao 125105, China
2. Liaoning Mine Safely Data Engineering Technology Research Center, Huludao 125105, China
3. Qilu University of Technology(Shandong Academy of Sciences), Jinan 250353, China
Funds:The National Natural Science Foundation of China(61702241, 61602226),The National Key R&D Program of China (2018YFB1402902, 2018YFB1403303)


摘要
摘要:该文提出一种基于全卷积深度残差网络、结合生成式对抗网络思想的基于属性一致的物体轮廓划分模型。采用物体轮廓划分网络作为生成器进行物体轮廓划分;该网络运用结构相似性作为区域划分的重构损失,从视觉系统的角度监督指导模型学习;使用全局和局部上下文判别网络作为双路判别器,对区域划分结果进行真伪判别的同时,结合对抗式损失提出一种联合损失用于监督模型的训练,使区域划分内容真实、自然且具有属性一致性。通过实例验证了该方法的实时性、有效性。
关键词:区域划分/
矿石粒度分析/
扩张卷积/
跳跃连接/
对抗式损失
Abstract:A new object contour partition model based on the fully convolutional network, combined with the idea of generative counter network and consistent attributes is proposed. Firstly, the image region partition network is used as a generator to divide the image region. Then the structural similarity is used as the reconstruction loss of regional division to supervise and guide model learning from the perspective of visual system. Finally, the global and local context discrimination networks are used as double-path similarity to supervise the reconstruction loss of regional division and guide model learning from the discriminators to distinguish the truth and falsity of the results of regional division, and a joint loss is proposed to train the supervision model in combination with the adversarial loss, so as to make the content of regional division true, natural and with attribute consistency. The instantaneity and effectiveness of the method are verified by living examples.
Key words:Region division/
Rock granularity analyze/
Dilated convolution/
Skip connection/
Adversarial loss



PDF全文下载地址:

https://jeit.ac.cn/article/exportPdf?id=0d52ffd8-161f-4346-9f48-900e43d3c54b
相关话题/网络 数据 计算机 计算 科学