删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

最大期望模拟退火的贝叶斯变分推理算法

本站小编 Free考研考试/2022-01-03

刘浩然1, 2,,,
张力悦1, 2,
苏昭玉1, 2,
张赟3,
张磊3
1.燕山大学信息科学与工程学院 秦皇岛 066004
2.河北省特种光纤与光纤传感重点实验室 秦皇岛 066004
3.北京市机电研究院 北京 100027
基金项目:国家重点研发项目(2019YFB1707301),河北省人才工程培养资助项目(A201903005)

详细信息
作者简介:刘浩然:男,1980年生,教授,研究方向为贝叶斯算法、工业故障诊断及预测
张力悦:男,1994年生,博士生,研究方向为贝叶斯算法、工业故障诊断及预测
苏昭玉:女,1994年生,硕士生,研究方向为贝叶斯算法、工业故障诊断及预测
张赟:女,1979年生,博士,研究方向为机械设计及原理、系统建模
张磊:男,1991年生,学士,研究方向为数控机床在线测量及系统建模
通讯作者:刘浩然 liu.haoran@ysu.edu.cn
中图分类号:TN911.7

计量

文章访问数:253
HTML全文浏览量:177
PDF下载量:54
被引次数:0
出版历程

收稿日期:2020-05-15
修回日期:2021-03-19
网络出版日期:2021-04-15
刊出日期:2021-07-10

Bayesian Variational Inference Algorithm Based on Expectation-Maximization and Simulated Annealing

Haoran LIU1, 2,,,
Liyue ZHANG1, 2,
Zhaoyu SU1, 2,
Yun ZHANG3,
Lei ZHANG3
1. School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
2. The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao 066004, China
3. Beijing Institute of Mechanical and Electrical Engineering, Beijing 100027, China
Funds:The National Key Research and Development Program of China (2019YFB1707301), Hebei Talent Engineering Training Support Project(A201903005)


摘要
摘要:针对贝叶斯变分推理收敛精度低和搜索过程中易陷入局部最优的问题,该文基于模拟退火理论(SA)和最大期望理论(EM),考虑变分推理过程中初始先验对最终结果的影响和变分自由能的优化效率问题,构建了双重EM模型学习变分参数的初始先验,以降低初始先验的敏感性,同时构建逆温度参数改进变分自由能函数,使变分自由能在优化过程得到有效控制,并提出一种基于最大期望模拟退火的贝叶斯变分推理算法。该文使用收敛性准则理论分析算法的收敛性,利用所提算法对一个混合高斯分布实例进行实验仿真,实验结果表明该算法具有较优的收敛结果。
关键词:贝叶斯变分推理/
模拟退火/
最大期望/
逆温度参数
Abstract:For the problem that Bayesian variational inference with low convergence precision is easy to fall into local optimum during search process, a Bayesian variational inference algorithm based on Expectation-Maximization (EM) and Simulated Annealing (SA) is proposed. The influence of the initial prior on the final result and the optimization efficiency of the variational free energy in the process of variational inference can not be ignored. The double EM is introduced to construct the initial prior of the variational parameter to reduce the sensitivity of the initial prior. And the inverse temperature parameter is introducted to improve the free energy function, which makes the energy be effectively controlled in the optimization process. This paper uses convergence criterion theory to analyze the convergence of the algorithm. The proposed algorithm is used for experiments with an Gaussian mixture model and the experimental results show that the proposed algorithm has better convergence results.
Key words:Bayesian variational inference/
Simulated Annealing(SA)/
Expectation-Maximization(EM)/
Inverse temperature parameter



PDF全文下载地址:

https://jeit.ac.cn/article/exportPdf?id=e62a9d5c-ecef-4b6f-b1da-5243029f4b4c
閻熸洑鐒︽竟姗€鎳撻崘顏嗗煛闁兼澘鍟畷銉︾▔閹捐尙鐟归悹鍥у⒔濠€鈩冿紣濡硶鍋撴笟鈧。鑺ユ償閹炬墎鍋撴担绛嬫綊濡増鍩婄槐鍨交濞嗘挸娅¢悹褍瀚花顔炬惥閸涱厼寮块柨娑楃濠€顏嗙棯閸喖甯抽悹鎰秺濡插嫮鎷犳导娆戠<
2濞戞挸娲ㄩ~鎺楁嚀閸愵亞鍩¢柤鏉垮暙瀹曘儵鎮介棃娑氭憤濞戞棑璁g槐娆愶紣濡櫣姘ㄩ柕鍡曟祰椤锛愰幋娆屽亾娴gǹ寮垮┑鍌涱殙缁侇偊寮▎娆戠闁告瑥锕ゅ濠氱嵁鐎靛憡鍩傚Λ鐗堬公缁辨繂鈽夐悽鍨0547闁圭鍋撻梻鍕╁灪閻楋拷4濞戞挸娲g紞鎴炵▔椤忓洠鍋撻崘顏嗗煛闁兼澘鍟畷銉︾▔閹捐尙鐟圭紒澶嬪灩濞蹭即濡存担瑙e亾閸愵亞鍩¢柛蹇e墮閸欙紕鎷犻幘鍛闁衡偓閹稿簼绗夐柤鏄忕簿椤曘垽寮弶娆惧妳闁挎稑顦埀顒婃嫹40缂佸绉崇粭鎾寸▔濮橀硸鏁嬪璇″亾缁辨瑩鏌岄幋锝団偓铏规兜閺囩儑绱滈柕鍡曞簻BA闁靛棔绀佸ù妤呮⒔閸涱厽娅岄柛鏃撶磿椤㈡碍绔熼鐘亾娴h鐓€闂傚倽顔婄槐鍫曞箻椤撶媭鏁嬪璇″亖閳ь兛鑳堕妵鐐村濮橆兛绱eù锝嗙矌椤㈡碍绔熼銈囨惣闁挎稑顦埀顒婃嫹28缂侇偉顕ч幃鎾剁驳婢跺⿴鍔呴柛鏃€绋撻弫鐢垫兜閺囨氨鐟╁☉鎾村搸閳ь剨鎷�1130缂佸绉剁划锟犲礂閸涘﹥娈岄柡澶嬪姂閳ь剙鍊瑰Λ銈囨媼閻戞ê浜堕柡鍕靛灣濠€鈩冿紣濡崵宸濈紓浣稿暔閳ь兛绶氶。鑺ユ償閹惧啿鐓曞Λ鐗堬公缁辨繃娼诲Ο缁樞﹀璺虹С缁″嫰寮▎鎰稄闁挎稑濂旂粩瀛樼▔閻氬様P濞村吋鑹鹃幉鎶藉锤閸パ冭婵犲◥銈呭枙闁诡喓鍔庡▓鎴︽閳ь剙效閸屾ǚ鍋撻敓锟�
相关话题/工业 系统 优化 实验 机电

闁瑰瓨鍔掔拹鐔烘嫚閸欍儱鏁╅悶娑辩厜缁辨繈宕氶崱鏇㈢叐閻犲洤澧介埢鑲╂導閸曨剚鐏愰梺鍓у亾鐢浜告潏顐㈠幋闁兼儳鍢茶ぐ锟�40%闁圭粯鍔栭崹姘辨導濮樿埖灏柨娑虫嫹
闁规亽鍔岀粻宥囨導濮樿埖灏柡澶婂暟濞夘參濡撮崒婵愬殾濞寸媴缍€閵嗗啴宕i鐐╁亾濮樺磭绠栧ù婊勫笩娴犲牏绱旈幋鐘垫惣闂侇偅鏌ㄧ欢鐐寸▔閻戞ɑ鎷辩紒鏃€鐟︾敮褰掔嵁閸噮鍚呭ù鑲╁Л閳ь剚閽扞P濞村吋鑹鹃幉鎶藉灳濠垫挾绀夐柣鈧妽閸╂盯鏌呭宕囩畺閻犲洤褰為崬顒傛偘閵娧勭暠闁告帒妫旈棅鈺呮煣閻愵剙澶嶉柟瀛樼墬閹癸綁骞庨妷銊ユ灎濞戞梹婢橀幃妤呮晬瀹€鍐惧殾濞寸媴缍€閵嗗啴鎳㈠畡鏉跨悼40%闁圭粯鍔栭崹姘跺Υ閸屾繍鍤﹀ù鐙呯秬閵嗗啰鎷归婵囧闁哄牜鍓涢悵顖涚鐠佸磭绉垮ù婧犲啯鎯傞柨娑樿嫰濞煎孩绂嶉銏犵秬9闁硅埖菧閳ь剙鍊搁惃銏ゅ礆閸℃洟鐓╅梺鍓у亾鐢挳濡存担瑙勫闯闁硅翰鍎卞ù姗€鎮ч崶鈺冩惣闁挎稑鑻ぐ鍌炲礆閺夋鍔呴柡宓氥値鍟堥柛褎绋忛埀顑胯兌濞呫劍鎯旈敃浣稿灡闁告皜浣插亾娴i晲绨抽柛妤佸搸閳ь兛绀佹禍鏇熺┍鎺抽埀顑垮倕Q缂佸本妞藉Λ鍧楀Υ娴h櫣鍙€濞戞柨绨洪埀顑挎祰閻挳鎮洪敐鍥╂惣闁告艾瀚妵鍥嵁閸愭彃閰遍柕鍡嫹