吴和彪,
赵书锋,
崔太平
重庆邮电大学通信与信息工程学院 重庆 400065
基金项目:国家重大研发计划(2017YFE0118900),欧盟H2020项目(734798)
详细信息
作者简介:申滨:男,1978年生,教授,研究方向为认知无线电、大规模MIMO等
吴和彪:男,1994年生,硕士生,研究方向为大规模机器类系统多用户检测
赵书锋:男,1991年生,硕士生,研究方向为大规模MIMO系统信号检测
崔太平:男,1981年生,讲师,研究方向为认知无线电、车联网
通讯作者:申滨 shenbin@cqupt.edu.cn
中图分类号:TN929.5计量
文章访问数:688
HTML全文浏览量:248
PDF下载量:32
被引次数:0
出版历程
收稿日期:2019-12-13
修回日期:2020-06-23
网络出版日期:2020-07-18
刊出日期:2020-12-08
Sparsity-aware Ordered Successive Interference Cancellation Based Multi-user Detection for Uplink mMTC
Bin SHEN,,Hebiao WU,
Shufeng ZHAO,
Taiping CUI
School of Communications and Information Engineering, Chongqing University of Posts andTelecommunications, Chongqing 400065, China
Funds:The National Key R&D Program of China (2017YFE0118900), The EU H2020 Project (734798)
摘要
摘要:在大规模机器类通信(mMTC)系统中,以用户活跃性为先验信息,接收机可以基于稀疏感知最大后验概率(S-MAP)准则来检测多用户信号。为了降低S-MAP检测的计算复杂度,基于干扰消除的思想,该文提出一种改进的活跃性感知有序正交三角分解(IA-SQRD)算法,以适用于mMTC系统上行链路多用户信号检测。IA-SQRD算法将传统的活跃性感知有序正交三角分解(A-SQRD)算法的最终解作为初始解,并额外增加迭代干扰消除操作,以进一步提高检测性能。此外,利用与改进A-SQRD算法相似的思路,该文对稀疏感知串行干扰消除(SA-SIC)、有序正交三角分解(SQRD)及数据相关的排序和正则化(DDS)算法亦进行了改进设计,分别获得了相应的改进型算法,即ISA-SIC、I-SQRD及I-DDS算法。仿真结果表明:相对于A-SQRD算法,在未显著增加计算复杂度的情况下,在系统误比特率(BER)为
关键词:多用户检测/
大规模机器类通信/
最大后验概率/
串行干扰消除
Abstract:In massive Machine-Type Communication (mMTC) systems, when the user activity is exploited as a priori information for the receiver, the Sparsity-aware Maximum A Posteriori probability (S-MAP) criterion can be used to recover the sparse multi-user vectors over the uplink mMTC systems. In order to reduce the computational complexity of S-MAP detection, based on interference cancellation mechanism, an Improved Activity-aware Sorted QR Decomposition (IA-SQRD) algorithm is proposed in this paper. The IA-SQRD algorithm utilizes the final solution of the A-SQRD algorithm as the initial solution and the iterative interference cancellation operation is performed to improve further the detection performance. Following the same philosophy in improving the A-SQRD algorithm, the conventional Sparsity-Aware Successive Interference Cancellation (SA-SIC), Sorted QR Decomposition (SQRD), and Data-Dependent Sorting and regularization (DDS) algorithms are modified to enhance the performance, respectively. Simulation results verify that compared with the A-SQRD algorithm, a 3 dB gain is achieved by the proposed IA-SQRD algorithm when the Bit Error Rate (BER) is
Key words:Multi-user detection/
Massive Machine-Type Communication (mMTC)/
Maximum A Posteriori (MAP) probability/
Successive interference cancellation
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=25d8c19e-b2de-4b1d-be72-b35e234735dd