王天龙,
刘衍舟,
黄橙,
张天骐
1.重庆邮电大学通信与信息工程学院 重庆 400065
2.信号与信息处理重庆市重点实验室 重庆 400065
基金项目:国家自然科学基金(61671095)
详细信息
作者简介:赵辉:女,1980年生,教授,博士生导师,研究方向为深空光通信、信号理论与信息处理、信号与图像处理
王天龙:男,1994年生,硕士,研究方向为信号与图像处理、进化计算、多目标优化
刘衍舟:男,1994年生,硕士,研究方向为信号与图像处理
黄橙:男,1993年生,硕士,研究方向为信号与图像处理
张天骐:男,1971年生,教授,博士生导师,研究方向为无线通信的智能信号处理、通信抗干扰和信息对抗
通讯作者:赵辉 zhaohui@cqupt.edu.cn
中图分类号:TP391.4计量
文章访问数:2063
HTML全文浏览量:634
PDF下载量:68
被引次数:0
出版历程
收稿日期:2019-08-05
修回日期:2020-02-13
网络出版日期:2020-03-25
刊出日期:2020-08-18
Decomposition and Dominance Relation Based Many-objective Evolutionary Algorithm
Hui ZHAO,,Tianlong WANG,
Yanzhou LIU,
Cheng HUANG,
Tianqi ZHANG
1. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2. Chongqing Key Laboratory of Signal and Information Processing, Chongqing 400065, China
Funds:The National Natural Science Foundation of China (61671095)
摘要
摘要:近年来,超多目标优化问题(MaOPs)成为了进化计算领域的研究热点。然而,在处理各种优化问题中,如何有效地平衡收敛性和多样性仍是一个难题。为了解决上述的问题,该文提出了一种基于分解和支配关系的超多目标进化算法(DdrEA)。首先利用权重向量把整个种群分解为一组子种群,这些子种群将进行协同优化;然后利用角度和角度支配关系计算子种群内每个解的值;最后根据适应度值进行精英选择,即在每个子空间内选取适应度值最小的解作为精英解进入下一代。DdrEA通过与当前较优的NSGA-II/AD, RVEA, MOMBI-II等多个超多目标进化算法进行实验对比,实验结果表明该文算法性能明显优于对比算法,能够有效平衡种群的收敛性和多样性。
关键词:超多目标优化/
分解/
支配关系/
进化算法
Abstract:In recent year, the Many-objective Optimization Problems (MaOPs) have become an increasingly hot research area in evolutionary computation. However, it is still a difficult problem to achieve a good balance between convergence and diversity on solving various kinds of MaOPs. To alleviate this issue mentioned above, a Decomposition and dominance relation based many-objective Evolutionary Algorithm(DdrEA) is proposed in this paper. Firstly, the population is decomposed into numbers of sub-populations by using a set of uniform weight vectors, in which they are optimized in a cooperative manner. Then, the fitness value of solution in each sub-population is calculated by angle dominance relation and angle. Finally, elite selection strategy is performed according to its corresponding fitness value. That is, in each subspace, the solution with the smallest fitness value is selected as the elite solution to enter the next generation. Comparing with several high-dimensional and multi-objective evolutionary algorithms (NSGA-II/AD, RVEA, MOMBI-II), the experimental results show that the performance of the proposed algorithm DdrEA is better than that of the comparison algorithm, and the convergence and diversity of the population can be effectively balanced.
Key words:Many-objective optimization/
Decomposition/
Dominance relation/
Evolutionary algorithm
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=1955a111-5968-4a52-b081-a7c73fc6d277