孟宪辉,
熊鹏,
刘秀玲,
1.河北大学电子信息工程学院 保定 071002
2.河北省数字医疗工程重点实验室 保定 071002
基金项目:国家自然科学基金(61673158),河北省自然科学基金(F2018201070),河北省研究生创新资助项目(CXZZSS2019006),河北省青年拔尖人才项目(BJ2019044)
详细信息
作者简介:刘明:男,1972年生,博士,副教授,研究方向为模式识别和心电信号处理
孟宪辉:女,1994年生,硕士生,研究方向为心电信号处理
熊鹏:女,1986年生,博士,讲师,研究方向为模式识别和生物信号处理
刘秀玲:女,1977年生,博士,教授,研究方向为生物医学成像和信号处理
通讯作者:刘秀玲 liuxiuling121@hotmail.com
中图分类号:TP399计量
文章访问数:1376
HTML全文浏览量:772
PDF下载量:28
被引次数:0
出版历程
收稿日期:2019-08-01
修回日期:2020-03-04
网络出版日期:2020-03-27
刊出日期:2020-07-23
Detection of Paroxysmal Atrial Fibrillation Based on Kernel Sparse Coding
Ming LIU,Xianhui MENG,
Peng XIONG,
Xiuling LIU,
1. College of Electronic and Information Engineering, Hebei University, Baoding 071002, China
2. Key Laboratory of Digital Medical Engineering of Hebei Province, Baoding 071002, China
Funds:The National Natural Science Fundation of China (61673158), The Natural Science Foundation of Hebei Province (F2018201070), The Graduate Innovation Funding Project of Hebei Province (CXZZSS2019006), The Hebei Young Talent Project (BJ2019044)
摘要
摘要:阵发性房颤(PAF)是一种具有偶发性的心律失常,其较高的漏检率导致心脏相关疾病的增加。该文提出了一种基于核稀疏编码的自动检测方法,可以仅根据较短RR间期数据识别PAF发作。该方法采用特殊几何结构来分析数据高维特性,通过计算协方差矩阵作为特征描述子,找到蕴含在数据中的黎曼流形结构;然后基于Log-Euclid框架,利用核方法将流形空间映射到高维可再生核希尔伯特空间,以获取更准确的稀疏表示来快速识别PAF。经麻省理工学院-贝斯以色列医院房颤数据库验证,获得98.71%的敏感性、98.43%的特异度和98.57%的总准确率。因此,该研究对检测短暂发作的PAF有实质性的改善,在临床监测和治疗方面显示出良好的潜力。
关键词:阵发性房颤/
协方差描述子/
黎曼流形/
核稀疏编码
Abstract:Paroxysmal Atrial Fibrillation (PAF) is a kind of accidental arrhythmia, and its high missed detection rate leads to the increase of heart-related diseases. An automatic detection method is proposed based on kernel sparse coding, which can identify PAF attacks based only on short RR interval data. A special geometric structure is presented to analyze the high-dimensional characteristics of the data, and the covariance matrix is calculated as a feature descriptor to find the Riemannian manifold structure contained in the data; Based on the Log-Euclidean framework, a manifold method is used to map the manifold space to a high-dimensional renewable kernel Hilbert space to obtain a more accurate sparse representation to identify quickly PAF. After verification by the Massa-chusetts Institute of Technology-Beth Israel Hospital atrial fibrillation database, the sensitivity is 98.71%, the specificity is 98.43%, and the total accuracy rate is 98.57%. Therefore, this study has a substantial improvement in the detection of transient PAF and shows good potential for clinical monitoring and treatment.
Key words:Paroxysmal Atrial Fibrillation(PAF)/
Covariance descriptor/
Riemann manifold/
Kernel sparse coding
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=8b416da2-de5a-4bf8-aa6f-e61015609a1d