刘怡然1,
宋祥福1,
王皓2,
郑志华2,
徐秋亮1,,
1.山东大学软件学院 济南 250101
2.山东师范大学信息科学与工程学院 济南 250358
基金项目:国家自然科学基金(61632020, 61572294);山东省自然科学基金(ZR2017MF021);山东省科技重大创新工程项目(2018CXGC0702);山东半岛国家自主创新示范区发展建设项目(S190101010001)
详细信息
作者简介:蒋瀚:男,1974年生,讲师,研究方向为密码学与信息安全
刘怡然:女,1996年生,博士生,研究方向为密码学与信息安全
宋祥福:男,1992年生,博士生,研究方向为密码学与信息安全
王皓:男,1984年生,副教授,研究方向为密码学与信息安全
郑志华:女,1962年生,副教授,研究方向为密码学与信息安全
徐秋亮:男,1960年生,教授,研究方向为密码学与信息安全
通讯作者:徐秋亮 xql@sdu.edu.cn
中图分类号:TN918; TP309计量
文章访问数:4188
HTML全文浏览量:2194
PDF下载量:293
被引次数:0
出版历程
收稿日期:2019-11-06
修回日期:2020-03-08
网络出版日期:2020-04-03
刊出日期:2020-06-04
Cryptographic Approaches for Privacy-Preserving Machine Learning
Han JIANG1,Yiran LIU1,
Xiangfu SONG1,
Hao WANG2,
Zhihua ZHENG2,
Qiuliang XU1,,
1. School of Software, Shandong University, Jinan 250101, China
2. School of Information Science and Technology, Shandong Normal University, Jinan 250358, China
Funds:The National Natural Science Foundation of China (61632020, 61572294); The Natural Science Foundation of Shandong Province (ZR2017MF021); The Major Innovation Project of Science and Technology of Shandong Province (2018CXGC0702); The Funds Project of National Independent Innovation Demonstration Zone in Shandong Peninsula (S190101010001)
摘要
摘要:新一代人工智能技术的特征,表现为借助GPU计算、云计算等高性能分布式计算能力,使用以深度学习算法为代表的机器学习算法,在大数据上进行学习训练,来模拟、延伸和扩展人的智能。不同数据来源、不同的计算物理位置,使得目前的机器学习面临严重的隐私泄露问题,因此隐私保护机器学习(PPM)成为目前广受关注的研究领域。采用密码学工具来解决机器学习中的隐私问题,是隐私保护机器学习重要的技术。该文介绍隐私保护机器学习中常用的密码学工具,包括通用安全多方计算(SMPC)、隐私保护集合运算、同态加密(HE)等,以及应用它们来解决机器学习中数据整理、模型训练、模型测试、数据预测等各个阶段中存在的隐私保护问题的研究方法与研究现状。
关键词:隐私保护机器学习/
安全多方计算/
同态加密/
隐私保护集合求交
Abstract:The characteristics of the new generation of artificial intelligence technology are shown as follows: with the help of GPU computing, cloud computing and other high-performance distributed computing capabilities, machine learning algorithms represented by deep learning algorithms are used for learning and training on big data to simulate, extend and expand human intelligence. Different data sources and computing physical locations make the current machine learning face serious privacy leakage problem, so the Privacy Protection of Machine (PPM) Learning has become a widely concerned research area. Using cryptography technology to solve the problem of privacy in machine learning is an important technology to protect the privacy of machine learning. Cryptographic tools used in privacy-preserving machine learning are introduced, such as general Secure Multi-Party Computing (SMPC), privacy protection set operation and Homomorphic Encryption (HE), describes the status and developments applying the tools to solving the problems of privacy protection in various stages of machine learning, such as data processing, model training, model testing, and data prediction.
Key words:Privacy-Preserving Machine (PPM) learning/
Secure MultiParty Computation(SMPC)/
Homomorphic Encryption(HE)/
Private Set Intersection(PSI)
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=39804d5b-1ab9-469b-8c74-f9a275c9b6f8