删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于强散射点在线估计的距离扩展目标检测方法

本站小编 Free考研考试/2022-01-03

郭鹏程1, 2,
刘峥1,,,
罗丁利2,
李俭朴1
1.西安电子科技大学雷达信号处理国家重点实验室 西安 710071
2.西安电子工程研究所 西安 710100

详细信息
作者简介:郭鹏程:男,1983年生,高级工程师,博士生,研究方向为雷达目标检测与识别
刘峥:男,1964年生,教授,研究方向为雷达信号处理的理论与系统设计、雷达精确制导技术、多传感器融合等
罗丁利:男,1974年生,研究员,研究方向为雷达信号处理、目标分类识别技术
李俭朴:男,1994年生,硕士生,研究方向为雷达目标检测
通讯作者:刘峥 lz@xidian.edu.cn
中图分类号:TN957.51

计量

文章访问数:1668
HTML全文浏览量:740
PDF下载量:42
被引次数:0
出版历程

收稿日期:2019-06-06
修回日期:2019-09-07
网络出版日期:2019-09-19
刊出日期:2020-06-04

Range Spread Target Detection Based on OnlineEstimation of Strong Scattering Points

Pengcheng GUO1, 2,
Zheng LIU1,,,
Dingli LUO2,
Jianpu LI1
1. National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China
2. Xi'an Electronic Engineering Research Institute, Xi’an 710100, China


摘要
摘要:传统的距离扩展目标检测一般在散射点密度或散射点数量先验条件下完成,在目标散射点信息完全未知时检测性能会大幅降低。针对这个问题,该文提出一种基于强散射点在线估计的距离扩展目标检测方法(OESS-RSTD),该方法利用机器学习中的无监督聚类算法在线估计强散射点数量以及首次检测门限,然后再结合虚警率,确定2次检测门限,最后通过两次门限检测完成目标有无的判决。该文分别利用仿真数据和实测数据进行了试验验证,并和其他算法进行了试验对比,通过虚警概率一定时的信噪比(SNR)-检测概率曲线验证了该文所提方法相对于传统算法有更高的稳健性,且该方法不需要目标散射点的任何先验信息。
关键词:高分辨雷达/
扩展目标检测/
聚类/
强散射点估计
Abstract:The traditional range-extended target detection is usually completed under the condition of scattering point density or scattering point number priori. The detection performance is greatly reduced when the scattering point information of the target is completely unknown. To solve this problem, a Range Spread Target Detection method based on Online Estimation of Strong Scattering(OESS-RSTD) points is proposed. Firstly, the unsupervised clustering algorithm in machine learning is used to estimate the number of strong scattering points and the first detection threshold adaptively. Then, the second detection threshold is determined according to false alarm rate. Finally, the existence of the target is determined through two detection thresholds. The simulation data and the measured data are used to verify and compare with other algorithms. By comparing the Signal-to-Noise Ratio (SNR) -detection probability curves of various methods with a given false alarm probability, it is verified that the proposed method has higher robustness than the traditional algorithm, and the method does not need any priori information of target scattering points.
Key words:High resolution radar/
Extended target detection/
Clustering/
Strong scattering point estimation



PDF全文下载地址:

https://jeit.ac.cn/article/exportPdf?id=004363f6-6e4c-4a77-b328-f6068d079ee9
闂佺懓鍚嬬划搴ㄥ磼閿燂拷2婵炴垶鎸稿ú銊╋綖閹烘鍤€闁告劦浜為崺锟犳煠閺夊灝鏆㈤柣锕€顦甸幃浠嬫濞戞碍鎲ゆ繛鎴炴鐠侊絿妲愬▎鎰剁矗婵☆垵娅e銊╂煥濞戞ḿ鐒锋い顐㈩儐閿涙劙骞嬮婊咁槴闂佺ǹ绻愮粔鐑藉垂閸岀偞鍋ㄩ柨鐕傛嫹
婵犮垹鐖㈤崶褍濮ら梺鍛婂笒濡盯顢旈姀銈嗩棄閻庯綆鍠栭崢鎾煛閸曢潧鐏fい鎴濇处缁嬪鍩€椤掆偓閳诲酣妾遍柍褜鍓欓崯浼存偉濞差亝鏅悘鐐电摂閸ょ姴霉濠婂啴顎楁い鈹嫭濯撮柡鍥╁枔閸欌偓闂佸綊娼цぐ鐐电箔閹惧鈻旀慨妯诲墯閸わ箓鏌熺粙鎸庢悙闁伙綁绠栧顐⑩枎閹邦厾绋勯梺鎸庣☉閺堫剟宕归妸褎濯奸柛娑橈攻缁犳帞鈧灚婢橀悧鍡浰囬崸妤佸仾闁硅揪闄勯敍鏍煏閸℃洖顣╮ee婵犮垹缍婇埀顒佺⊕閵嗗啴鏌涢幒鎴烆棞妞ゆ帞鍠愮粙濠囨偐閻㈢數效闂佸吋婢橀崯浼存偉閸濆媱搴㈡綇椤愮喎浜鹃柡鍥ㄦ皑閻熲晛鈽夐幘缈犱孩妞ゆ洝娅曞ḿ蹇涘川椤撗冩20濡ょ姷鍋犻幓顏嗘濠靛绠戦柤濮愬€楀▔銏犆瑰⿰鍐╊棥缂佸顕埀顒€婀遍崑鐔煎极閵堝鍎嶉柛鏇ㄥ墮閻﹀綊鎮楃憴鍕暡闁哄棌鍋撻梺鍝勵槹閸旀牠鎮¢敍鍕珰闁靛繆鍓濋悡娆愮箾婢跺绀€鐎殿噣鏀卞鍕吋閸曨厾妲戦梺鍝勫€介~澶屾兜閸洘鏅悘鐐靛亾缁犳帡姊婚崶锝呬壕闁荤喐娲戦懗璺衡枔閹达附鍎戦悗锝庡幘缁犳牠鏌℃径娑欏
相关话题/概率 数据 技术 信息 博士生

闁荤喐娲戦悞锔界珶濮椻偓閹虫捇宕橀鍡楃厸闂佸吋婢橀崯顐㈢暦閵夛妇鈻旈柟鎹愬皺閻熷綊鎮归崶褍鈷旀繝鈧埄鍐跨矗婵☆垳纭堕崑鎾寸瑹閳ь剟銆傞懞銉﹀劅闁圭偓澧庨崑鎾存媴缁涘缍婃俊顐ゅ閸╁﹦妲愰崹顐d氦婵炲棙鎸稿▍锟犳偣瑜嶇€氼厾鑺遍鐐儱闁告侗鍘煎鍧楁煥濞戞顦︽繝鈧鍡欐/闁割煈鍠栫敮鎶芥偣閹邦剛绉烘俊鎻掑閹风姵瀵煎▎鎴狅紲
2婵炴垶鎸稿ú銊╋綖閹烘鍤€闁告劦浜為崺锟犳煠閺夊灝鏆欑€规洏鍎甸幃浠嬫濞戞碍鎲ゆ繛鎴炴鐠侊絿妲愬▎鎰剁矗婵☆垵娅e銊╂煏閸℃洘绁版い顐㈩儐閿涙劙骞嬪▎灞戒壕濞达絿枪瀵灝鈹戦崒娑辨畽缂佷緡鍋婂顒€鈻庡▎鎴狀槴闂佸憡鐟ラ敃銈咁啅婵犳氨宓侀悗闈涙啞閸╁倸螞閻楀牞鍏紒杈ㄧ箓閳藉鎮介崹顐わ紣547闂佸湱顣介崑鎾绘⒒閸曗晛鐏柣妤嬫嫹4婵炴垶鎸稿ú锝囩礊閹寸偟鈻旀い蹇撴礌閸嬫捇宕橀鍡楃厸闂佸吋婢橀崯顐㈢暦閵夛妇鈻旈柟鎹愬皺閻熷湱绱掓径瀣仼婵炶弓鍗虫俊瀛樻媴鐟欙絽浜鹃柛鎰典簽閸╋繝鏌涜箛锝呭闁告瑱绱曢幏鐘诲箻閸涱垳顦╅梺琛″亾闁圭ǹ绨肩粭澶愭煠閺勫繒绨挎い鏇樺灲瀵偊寮跺▎鎯уΤ闂佹寧绋戦ˇ顓㈠焵椤掑﹥瀚�40缂備礁顦粔宕囩箔閹惧鈻旀慨姗€纭搁弫瀣熆鐠団€充壕缂佽鲸鐟╅弻宀勫箣閿濆洠鍋撻搹瑙勫厹闁哄洨鍎戠槐婊堟煏閸℃洖绨籅A闂侀潧妫旂粈浣该瑰Δ鍛挃闁告侗鍘藉▍宀勬煕閺冩挾纾挎い銏$缁旂喖顢曢悩顐壕濞达綀顫夐悡鈧梻鍌氬€介濠勬閸洖绠绘い鎾跺閺佸顭跨拠鈥充簴闁逞屽厸閼冲爼濡甸悙鏉戭嚤婵﹩鍏涚槐锝吤归敐鍡欑煂妞ゃ垺纰嶇粩鐔碱敃閵堝洦鎯i梺鎸庣☉椤︻參鍩€椤掑﹥瀚�28缂備緡鍋夐褔骞冮幘鍓侀┏濠㈣泛饪撮崝鍛存煕閺冣偓缁嬫捇寮悽鍨厹闁哄洦姘ㄩ悷鈺佲槈閹炬潙鎼搁柍褜鍓ㄩ幏锟�1130缂備礁顦粔鍓佸垝閿熺姴绀傞柛娑橈攻濞堝矂鏌℃径瀣闁逞屽墮閸婄懓螞閵堝洦濯奸柣鎴灻禍鍫曟煛閸曢潧鐏f繝鈧埄鍐跨矗婵☆垵宕靛婵堢磽娴gǹ鏆旈柍褜鍏涚欢姘躲€傞懞銉﹀劅闁规儳鍟块悡鏇炍涢悧鍫叕缂佽鲸绻冨ḿ璇参熺紒妯烇箑顭跨捄铏剐$紒鈥冲瀵偄鈻庨幇顓犵▌闂佹寧绋戞總鏃傜博鐎涙ḿ鈻旈柣姘P婵炴潙鍚嬮懝楣冨箟閹惰棄閿ら柛銉戝啳顔夊┑鐘测棩閵堝懎鏋欓梺璇″枔閸斿骸鈻撻幋锔筋梿闁逞屽墮鏁堥柛灞厩氶崑鎾绘晸閿燂拷