删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于接收信号强度非齐性分布特征的半监督学习室内定位指纹库构建

本站小编 Free考研考试/2022-01-03

李世宝,,
王升志,
刘建航,
黄庭培,
张鑫
中国石油大学(华东)计算机与通信工程学院 青岛 ??266580
基金项目:国家自然科学基金(61972417, 61601519, 61872385),中央高校基本科研业务费专项资金(18CX02134A, 18CX02137A, 18CX02133A,19CX05003A-4)

详细信息
作者简介:李世宝:男,1978年生,副教授,研究方向为移动计算、无线传感器网络、干扰对齐等
王升志:男,1994年生,硕士生,研究方向为无线定位技术
刘建航:男,1978年生,副教授、博士,研究方向为无线局域网、车联网
黄庭培:女,1980年生,讲师、博士,研究方向为无线传感器网络
张鑫:男,1993年生,硕士生,研究方向为无线定位技术
通讯作者:李世宝 lishibao@upc.edu.cn
中图分类号:TN929.5

计量

文章访问数:2391
HTML全文浏览量:785
PDF下载量:64
被引次数:0
出版历程

收稿日期:2018-06-20
修回日期:2019-02-28
网络出版日期:2019-03-30
刊出日期:2019-10-01

Semi-supervised Indoor Fingerprint Database Construction Method Based on the Nonhomogeneous Distribution Characteristic of Received Signal Strength

Shibao LI,,
Shengzhi WANG,
Jianhang LIU,
Tingpei HUANG,
Xin ZHANG
College of Computer and Communication Engineering, China University of Petroleum (East China), Qingdao 266580, China
Funds:The National Natural Science Foundation of China (61972417, 61601519, 61872385), The Fundamental Research Funds for the Central Universities (18CX02134A, 18CX02137A, 18CX02133A, 19CX05003A-4)


摘要
摘要:室内定位中半监督学习的指纹库构建方法能够降低人力开销,但忽略了高维接收信号强度(RSS)数据不均匀的非齐分布特点,影响定位精度,针对此问题该文提出一种基于RSS非齐性分布特征的半监督流形对齐指纹库构建方法。该算法运用局部RSS尺度参数以及共享近邻相似性构造权重矩阵,得到精确反映RSS数据流形结构的权重图,利用该权重图通过求解流形对齐的目标函数最优解,实现运用少量标记数据对大量未标记数据的位置标定。实验结果表明,该算法可以显著降低离线阶段数据采集的工作量,同时可以取得较高的定位精度。
关键词:无线局域网/
室内指纹定位/
半监督流形对齐/
非齐性分布/
指纹库构建
Abstract:The radio map construction is time consuming and labor intensive, and the conventional semi-supervised based methods usually ignore the influence of the uneven distribution of high-dimensional Received Signal Strength (RSS). In order to solve that problem, a semi-supervised radio map construction approach which is based on the nonhomogeneous distribution characteristic of RSS is proposed. The approach utilizes the RSS local scale and common neighbors similarities to calculate the weighted matrix. Thus, the weighted graph that reflects accurately the structure of RSS data manifold is presented. In addition, the weighted graph is used to find the optimal solution of the objective function to calibrate the locations of plenty of unlabeled data by a small number of labeled RSS. The extensive experiments demonstrate that the proposed method is capable of not only constructing an accurate radio map at a low manual cost, but also achieving a high localization accuracy.
Key words:Wireless Local Area Network (WLAN)/
Indoor fingerprinting localization/
Semi-supervised manifold alignment/
Nonhomogeneous distribution/
Radio map construction



PDF全文下载地址:

https://jeit.ac.cn/article/exportPdf?id=e20ae62b-8a5f-4739-b36d-da2d9928c2ea
闂佸綊娼ч鍡椻攦閳ь剟鐓崶璺轰喊闁逞屽墰閸犲酣宕㈤妶鍥ㄥ閻熸瑥瀚弳鍫ユ煕閹邦剙顨欑紒鍙樺嵆瀹曘劑鏁撻敓锟�闂佹寧绋戦惉濂告偟濞戙垹纭€閻庡湱濮寸粻顖炴煕濞嗘劗澧繝鈧幍顔惧崥婵炲棙甯為妶顐︽煛閸屾稓鎳嗙悮娆撴煕濡警鍎戠紓鍌氼槺閳ь剟娼уΛ娑㈡偉濠婂牊鏅柨鐕傛嫹
相关话题/数据 网络 博士 技术 传感器

闂佺懓鐡ㄩ崝鎺旀嫻閻旂儤瀚氶柛娆嶅劚閺佲晠鎮跺☉杈╁帨缂佽鲸绻堝畷姘跺幢閺囥垻鍙愰柣鐘叉搐婢т粙鍩㈤懖鈺傚皫闁告洦鍓氶悘鎰版⒑閸撗冧壕閻㈩垰顕禍鍛婃綇椤愩垹骞嬮梺鍏煎劤閸㈣尪銇愰敓锟�40%闂佸湱绮崝鏍垂濮樿鲸灏庢慨妯垮煐鐏忣亪鏌ㄥ☉铏
闂佽浜介崝宀€绮诲鍥ㄥ皫婵ǹ鍩栫亸顏堟煛婢跺﹤鏆熸繛澶樺弮婵℃挳宕掑┑鎰婵炲濯寸紞鈧柕鍡楀暣瀹曪綁顢涢悙鈺佷壕婵ê纾粻鏍瑰⿰鍕濞寸姴鐗忕槐鏃堝箣閻樺灚鎯i梻渚囧亝閺屻劎娆㈤悙瀵糕枖闁绘垶蓱閹疯京绱掗弮鈧悷锔炬暜瑜版帞宓侀柛顭戝櫘閸氬懎霉閼测晛袥闁逞屽墯闁芥墳P婵炴潙鍚嬮懝楣冨箟閹惰棄鐏虫繝鍨尵缁€澶愭煟閳ь剙濡介柛鈺傜洴閺屽懎顫濆畷鍥╃暫闁荤姴娲よぐ鐐哄船椤掑倹鍋橀柕濞у嫮鏆犻梺鍛婂笒濡棃妫呴埡鍛叄闁绘劦鍓欐径宥夋煙鐎涙ḿ澧柟鐧哥秮楠炲酣濡烽妸銉︾亷婵炴垶姊瑰姗€骞冨Δ鍛櫖鐎光偓閸愭儳娈炬繛瀵稿缂嶁偓闁靛棗鍟撮幊銏犵暋閺夎法鎮�40%闂佸湱绮崝鏍垂濮樿泛违闁稿本绻嶉崵锕€霉閻欏懐绉柕鍡楀暟閹峰綊顢樺┑鍥ь伆闂佸搫鐗滈崜娑㈡偟椤栨稓顩烽悹浣哥-缁夊灝霉濠х姴鍟幆鍌炴煥濞戞ǹ瀚版繛鐓庡缁傚秹顢曢姀鐘电К9闂佺鍩栬彠闁逞屽墮閸婃悂鎯冮姀銈呯闁糕剝娲熼悡鈺呮⒑閸撗冧壕閻㈩垱鎸虫俊瀛樻媴鐟欏嫬闂梺纭呯堪閸庡崬霉濮椻偓閹囧炊閳哄啯鎯i梺鎸庣☉閼活垵銇愰崒鐐茬闁哄顑欓崝鍛存煛瀹撴哎鍊ら崯鍫ユ煕瑜庣粙蹇涘焵椤戣儻鍏屾繛鍛妽閹棃鏁冩担绋跨仭闂佸憡鐨滄担鎻掍壕濞达綁鏅茬花鎶芥煕濡や礁鎼搁柍褜鍏涚粈浣圭閺囩喓鈹嶉幒鎶藉焵椤戝灝鍊昋缂備礁鏈钘壩涢崸妤€违濞达綀娅i崣鈧繛鎴炴煥缁ㄦ椽鍩€椤戞寧绁伴柣顏呮尦閹椽鏁愰崶鈺傛儯闂佸憡鑹剧€氼剟濡甸崶顒傚祦闁告劖褰冮柊閬嶆煏閸☆厽瀚�