张怡帆,,
任炯炯
1.解放军信息工程大学 ??郑州 ??450001
2.数学工程与先进计算国家重点实验室 ??郑州 ??450001
基金项目:信息保障技术重点实验室开放基金(KJ-17-002),国家密码发展基金(MMJJ20180203),数学工程与先进计算国家重点实验室开放基金(2018A03)
详细信息
作者简介:陈少真:女,1967年生,教授,研究方向为密码学信息安全
张怡帆:女,1993年生,硕士生,研究方向为信息安全
任炯炯:男,1994年生,博士生,研究方向为信息安全
通讯作者:张怡帆 zhangyifan_fan@163.com
中图分类号:TP309计量
文章访问数:1647
HTML全文浏览量:864
PDF下载量:47
被引次数:0
出版历程
收稿日期:2018-12-03
修回日期:2019-05-31
网络出版日期:2019-06-12
刊出日期:2019-10-01
Constructions of Maximal Distance Separable Matrices with Minimum XOR-counts
Shaozhen CHEN,Yifan ZHANG,,
Jiongjiong REN
1. PLA Information Engineering University, Zhengzhou 450001, china
2. State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, china
Funds:The Foundation of Science and Technology on Information Assurance Laboratory (KJ-17-002), The National Cipher Development Foundation (MMJJ20180203), The State Key Laboratory of Mathematical Engineering and Advanced Computation Open Foundation (2018A03)
摘要
摘要:随着物联网等普适计算的发展,传感器、射频识别(RFID)标签等被广泛使用,这些微型设备的计算能力有限,传统的密码算法难以实现,需要硬件效率高的轻量级分组密码来支撑。最大距离可分(MDS)矩阵扩散性能最好,通常被用于构造分组密码扩散层,异或操作次数(XORs)是用来衡量扩散层硬件应用效率的一个指标。该文利用一种能更准确评估硬件效率的XORs计算方法,结合一种特殊结构的矩阵—Toeplitz矩阵,构造XORs较少效率较高的MDS矩阵。利用Toeplitz矩阵的结构特点,改进矩阵元素的约束条件,降低矩阵搜索的计算复杂度,在有限域
关键词:分组密码/
轻量级扩散层/
最大距离可分矩阵/
异或数/
Toeplitz矩阵
Abstract:With the development of the internet of things, small-scale communication devices such as wireless sensors and the Radio Frequency IDentification(RFID) tags are widely used, these micro-devices have limited computing power, so that the traditional cryptographic algorithms are difficult to implement on these devices. How to construct a high-efficiency diffusion layer becomes an urgent problem. With the best diffusion property, the Maximal Distance Separable (MDS) matrix is often used to construct the diffusion layer of block ciphers. The number of XOR operations (XORs) is an indicator of the efficiency of hardware applications. Combined with the XORs calculation method which can evaluate hardware efficiency more accurately and a matrix with special structure——Toeplitz matrix, efficient MDS matrices with less XORs can be constructed. Using the structural characteristics of the Toeplitz matrix, the constraints of matrix elements are improved, and the complexity of matrices searching is reduced. The 4×4 MDS matrices and the 6×6 MDS matrices with the least XORs in the finite field
Key words:Block cipher/
Lightweight diffusion layers/
Maximal Distance Separable(MDS) matrices/
XOR-counts/
Toeplitz matrices
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=6835c95e-8ff9-4052-baad-22146ef5c2bc