李全龙,
刘政怡,
安徽大学计算机科学与技术学院 合肥 230601
详细信息
作者简介:李炜:女,1969年生,教授,研究方向为计算机视觉
李全龙:男,1995年生,硕士生,研究方向为图像显著性检测
刘政怡:女,1978年生,副教授,研究方向为计算机视觉
通讯作者:刘政怡 liuzywen@ahu.edu.cn
中图分类号:TP391计量
文章访问数:1433
HTML全文浏览量:830
PDF下载量:85
被引次数:0
出版历程
收稿日期:2019-02-01
修回日期:2019-06-03
网络出版日期:2019-06-12
刊出日期:2019-10-01
Salient Object Detection Using Weighted K-nearest Neighbor Linear Blending
Wei LI,Quanlong LI,
Zhengyi LIU,
College of Computer Science and Technology, Anhui University, Hefei 230601, China
摘要
摘要:显著性目标检测旨在于一个场景中自动检测能够引起人类注意的目标或区域,在自底向上的方法中,基于多核支持向量机(SVM)的集成学习取得了卓越的效果。然而,针对每一张要处理的图像,该方法都要重新训练,每一次训练都非常耗时。因此,该文提出一个基于加权的K近邻线性混合(WKNNLB)显著性目标检测方法:利用现有的方法来产生初始的弱显著图并获得训练样本,引入加权的K近邻(WKNN)模型来预测样本的显著性值,该模型不需要任何训练过程,仅需选择一个最优的K值和计算与测试样本最近的K个训练样本的欧式距离。为了减少选择K值带来的影响,多个加权的K近邻模型通过线性混合的方式融合来产生强的显著图。最后,将多尺度的弱显著图和强显著图融合来进一步提高检测效果。在常用的ASD和复杂的DUT-OMRON数据集上的实验结果表明了该算法在运行时间和性能上的有效性和优越性。当采用较好的弱显著图时,该算法能够取得更好的效果。
关键词:显著性目标检测/
集成学习/
线性混合/
加权的K近邻
Abstract:Salient object detection which aims at automatically detecting what attracts human’s attention most in a scene, bootstrap learning based on Support Vector Machine(SVM) has achieved excellent performance in bottom-up methods. However, it is time-consuming for each image to be trained once based on multiple kernel SVM ensemble. So a salient object detection model via Weighted K-Nearest Neighbor Linear Blending (WKNNLB) is proposed. First of all, existing saliency detection methods are employed to generate weak saliency maps and obtain training samples. Then, Weighted K-Nearest Neighbor (WKNN) is introduced to learning salient score of samples. WKNN model needs no pre-training process, only needs selecting K value and computing saliency value by the K-nearest neighbors labels of training sample and the distances between the K-nearest neighbors training samples and the testing sample. In order to reduce the influence of selecting K value, linear blending of multi-WKNNs is applied to generating strong saliency maps. Finally, multi-scale saliency maps of weak and strong model are integrated together to further improve the detection performance. The experimental results on common ASD and complex DUT-OMRON datasets show that the algorithm is effective and superior in running time and performance. It can even perform favorable against the state-of-the-art methods when adopting better weak saliency map.
Key words:Salient object detection/
Bootstrap learning/
Linear blending/
Weighted K-Nearest Neighbor(WKNN)
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=b30bcf4c-4a66-460b-9158-d00d56e0c66a