删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于无迹卡尔曼滤波的iBeacon/INS数据融合定位算法

本站小编 Free考研考试/2022-01-03

王守华1, 2,,,
陆明炽1, 2,
孙希延1, 2, 3,
纪元法1, 2, 3,
胡丁梅1, 2
1.桂林电子科技大学广西精密导航技术与应用重点实验室 桂林 541004
2.卫星导航定位与位置服务国家地方联合工程研究中心 桂林 541004
3.桂林电子科技大学广西信息科学实验中心 桂林 541004
基金项目:国家重点研发计划(2018YFB0505103),广西自然科学基金(2018GXNSFAA050123),广西精密导航技术与应用重点实验室主任基金(DH201803),广西科技项目(AA17202033),桂林电子科技大学研究生教育创新计划项目(2018YJCX28)

详细信息
作者简介:王守华:男,1975年生,副教授,研究方向为信号处理、卫星导航
陆明炽:男,1990年生,硕士生,研究方向为室内导航、深度学习
孙希延:女,1973年生,博士,研究方向为卫星导航和电子对抗
纪元法:男,1975年生,博士,研究方向为卫星通信、卫星导航和数字信号处理
胡丁梅:女,1995年生,硕士生,研究方向为室内导航、数据融合
通讯作者:王守华 hwafly@guet.edu.cn
中图分类号:TN965.72

计量

文章访问数:2369
HTML全文浏览量:1130
PDF下载量:77
被引次数:0
出版历程

收稿日期:2018-07-23
修回日期:2019-02-25
网络出版日期:2019-04-18
刊出日期:2019-09-10

IBeacon/INS Data Fusion Location Algorithm Based on Unscented Kalman Filter

Shouhua WANG1, 2,,,
Mingchi LU1, 2,
Xiyan SUN1, 2, 3,
Yuanfa JI1, 2, 3,
Dingmei HU1, 2
1. Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China
2. Satellite Navigation and Location Service National & Local Joint Engineering Research Center, Guilin 541004, China
3. Guangxi Experiment Center of Information Science, Guilin University of Electronic Technology, Guilin 541004, China
Funds:The National Key R&D Program of China (2018YFB0505103), The Foundation of Guangxi Natural Science Foundation (2018GXNSFAA050123), The Foundation of Guangxi Key Laboratory of Precision Navigation Technology and Application (DH201803), The Department of Science and Technology of Guangxi Zhuang Autonomous Region (AA17202033), The Innovation Project of Guet Graduate Education (2018YJCX28)


摘要
摘要:针对微机电惯性导航系统(MEMS-INS)定位解算存在积累误差及低功耗蓝牙技术iBeacon指纹定位存在跳变误差等问题,该文提出一种基于无迹卡尔曼滤波器(UKF)的iBeacon/MEMS-INS数据融合定位算法。该算法对iBeacon锚点与定位目标的距离进行解算,利用加速度计和陀螺仪的数据实现姿态阵和位置解算。将蓝牙锚点位置向量、载体速度误差信息等组成状态量,将惯性导航定位信息和蓝牙定位距离信息等组成观测量,设计无迹卡尔曼滤波器,实现iBeacon/MEMS-INS数据融合定位。实验测试结果表明,该算法有效解决MEMS-INS存在较大积累误差及iBeacon指纹定位存在跳变误差的问题,可以实现1.5 m内的定位精度。
关键词:惯性传感器/
蓝牙信标/
无迹卡尔曼滤波器/
信息融合/
行人定位
Abstract:In order to overcome the accumulation error in Micro-Electro-Mechanical System-Inertial Navigation System (MEMS-INS) and the jump error in iBeacon fingerprint positioning, an iBencon/MEMS-INS data fusion location algorithm based on Unscented Kalman Filter (UKF) is proposed. The new algorithm solves the distance between the iBeacon anchor and the locating target. The solution of attitude matrix and position are obtained respectively by using accelerometer and gyroscope data. Bluetooth anchor position vector, the carrier speed error and other information constitute state variables. Inertial navigation location and bluetooth system distance information constitute measure variables. Based on state variables and measure variables, the UKF is designed to realize iBencon/MEMS-INS data fusion indoor positioning. The experimental results show that the proposed algorithm can effectively solve the problem of the large accumulation error of INS and the jump error of iBeacon fingerprint positioning, and this algorithm can realize 1.5 m positioning accuracy.
Key words:Inertial sensor/
Bluetooth beacon/
Unscented Kalman Filter (UKF)/
Information fusion/
Pedestrian positioning



PDF全文下载地址:

https://jeit.ac.cn/article/exportPdf?id=daa14c6d-9996-4bcd-a637-b0f0bc063c38
相关话题/广西 信息 数据 桂林电子科技大学 博士