李红1, 2,,,
马英杰2,
秦晓宏2
1.西安电子科技大学? ?西安? ?710071
2.北京电子科技学院? ?北京? ?100070
基金项目:国家自然科学基金(61772047)
详细信息
作者简介:赵耿:男,1964年生,博士后,研究方向为混沌密码理论及应用,计算机信息安全与保密
李红:女,1991年生,硕士生,研究方向为混沌抗退化与无退化,图像加密
马英杰:女,1979年生,副教授,研究方向为混沌保密通信
秦晓宏:女,1976年生,讲师,研究方向为信息安全、信息隐藏
通讯作者:李红 1940571437@qq.com
中图分类号:TP309.7计量
文章访问数:1440
HTML全文浏览量:886
PDF下载量:40
被引次数:0
出版历程
收稿日期:2018-09-30
修回日期:2019-02-21
网络出版日期:2019-03-15
刊出日期:2019-09-10
Discrete Dynamic System without Degradation -configure N Positive Lyapunov Exponents
Geng ZHAO1, 2,Hong LI1, 2,,,
Yingjie MA2,
Xiaohong QIN2
1. Xidian University, Xi’an 710071, China
2. Beijing Electronic Science and Technology Institute, Beijing 100070, China
Funds:The National Natural Science Foundation of China(61772047)
摘要
摘要:针对离散时间混沌动力学系统,该文提出一种基于矩阵特征值以及特征向量配置Lyapunov指数为正的新算法。计算离散受控矩阵的特征值以及特征向量,设计一类具有正Lyapunov指数的通用控制器,理论证明系统轨道的有界性和Lyapunov指数的有限性。对线性反馈算子以及微扰反馈算子进行数值仿真分析,验证了算法的正确性、通用性和有效性。性能评估表明,与Chen-Lai算法相比,该方法可以构建较低计算复杂度的混沌系统,并且运行时间较短,其输出序列也具有较强的随机性,实现了无退化、无兼并的离散混沌系统。
关键词:混沌系统/
无退化/
Lyapunov指数/
矩阵特征值/
线性反馈算子/
微扰反馈算子
Abstract:Considering discrete-time chaotic dynamics systems, a new algorithm is proposed which is based on matrix eigenvalues and eigenvectors to configure Lyapunov exponents to be positive. The eigenvalues and eigenvectors of the discrete controlled matrix are calculated to design a general controller with positive Lyapunov exponents. The theory proves the boundedness of the system orbit and the finiteness of the Lyapunov exponents. The numerical simulation analysis of the linear feedback operator and the perturbation feedback operator verifies the correctness, versatility and effectiveness of the algorithm. Performance evaluations show that, compared with Chen-Lai methods, the proposed method can construct chaotic system with lower computation complexity and the running time is shorter and the outputs demonstrate strong randomness. Thus, a discrete chaotic system with no degradation and no merger is realized.
Key words:Chaotic system/
No-degenerate/
Lyapunov exponent/
Matrix eigenvalue/
Linear feedback operator/
Perturbation feedback operator
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=7e484f2a-8e19-4360-98c2-2d17ad4a09e1