删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

结合字典学习技术的ISAR稀疏成像方法

本站小编 Free考研考试/2022-01-03

胡长雨,
汪玲,,
朱栋强
南京航空航天大学雷达成像与微波光子技术教育部重点实验室 ??南京 ??210016
基金项目:国家自然科学基金(61871217),江苏省研究生科研与实践创新计划(KYCX18_0291)

详细信息
作者简介:胡长雨:男,1989年生,博士生,研究方向为逆合成孔径雷达稀疏成像
汪玲:女,1977年生,教授,博士生导师,研究方向为合成孔径成像、逆合成孔径成像、无源成像、压缩感知成像和超分辨成像
朱栋强:男,1993年生,硕士生,研究方向为基于压缩感知的ISAR成像
通讯作者:汪玲 tulip_wling@nuaa.edu.cn
中图分类号:TN957.52

计量

文章访问数:1625
HTML全文浏览量:812
PDF下载量:73
被引次数:0
出版历程

收稿日期:2018-07-23
修回日期:2019-01-21
网络出版日期:2019-02-14
刊出日期:2019-07-01

Sparse ISAR Imaging Exploiting Dictionary Learning

Changyu HU,
Ling WANG,,
Dongqiang ZHU
Key Laboratory of Radar Imaging and Microwave Photonics of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Funds:The National Natural Science Foundation of China (61871217), The Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_0291)


摘要
摘要:鉴于稀疏ISAR成像方法的成像质量受到待成像场景的稀疏表示不准确的限制,该文将字典学习(DL)技术引入到ISAR稀疏成像中,以提升目标成像质量。该文给出基于离线DL和在线DL两种ISAR稀疏成像方法。前者通过已有同类目标ISAR图像进行学习,获得更优稀疏表示,后者在成像过程中从现有数据中通过优化获得稀疏表示。仿真和实测ISAR数据成像结果表明,结合离线DL和在线DL的成像方法均可获得比现有方法更优的成像结果,离线DL成像优于在线DL成像,而且前者计算效率优于后者。
关键词:逆合成孔径雷达/
稀疏成像/
稀疏表示/
字典学习/
压缩感知
Abstract:In view of the imaging quality of sparse ISAR imaging methods is limited by the inaccurate sparse representation of the scene to be imaged, the Dictionary Learning (DL) technique is introduced into ISAR sparse imaging to get better sparse representation of the scene. An off-line DL based imaging method and an on-line DL based imaging method are proposed. The off-line DL imaging method can obtain a better sparse representation via a dictionary learned from the available ISAR images. The on-line DL imaging method can obtain the sparse representation from the data currently considered by jointly optimizing the imaging and DL processes. The results of both simulated and real ISAR data show that the on-line DL imaging method and the off-line dictionary imaging method are both able to better sparsely represent the target scene leading to better imaging results. The off-line DL based imaging method works better than the on-line DL based imaging method with respect to both imaging quality and computational efficiency.
Key words:Inverse Synthetic Aperture Radar (ISAR)/
Sparse imaging/
Sparse representation/
Dictionary Learning(DL)/
Compressive Sensing (CS)



PDF全文下载地址:

https://jeit.ac.cn/article/exportPdf?id=d34dd68e-7b52-4691-809d-e94064b4efa3
相关话题/质量 数据 技术 南京航空航天大学 科研