陈亚伟,
孙俊
1.南京电子技术研究所 ??南京 ??210039
2.中国电子科技集团公司智能感知技术重点实验室 ??南京 ??210039
详细信息
作者简介:钱宇宁:男,1988年生,工程师,研究方向为水声信号处理
陈亚伟:男,1985年生,高级工程师,研究方向为水声信号处理
孙俊:男,1975年生,高级工程师,研究方向为信号与信息处理
通讯作者:钱宇宁 inter101010@sina.com
中图分类号:TB566计量
文章访问数:1019
HTML全文浏览量:612
PDF下载量:51
被引次数:0
出版历程
收稿日期:2018-04-26
修回日期:2018-09-07
网络出版日期:2018-09-21
刊出日期:2019-02-01
Sonar Broadband Adaptive Beamforming Based on Enhanced Keystone Transform
Yuning QIAN,,Yawei CHEN,
Jun SUN
1. Nanjing Research Institute of Electronics Technology, Nanjing 210039, China
2. Key Laboratory of IntelliSense Technology, CETC, Nanjing 210039, China
摘要
摘要:针对Keystone变换在宽带阵列预处理方面的优势和常规Keystone变换存在的阵元数据缺失问题,该文将自回归模型与常规Keystone变换相结合,提出一种基于提升Keystone变换的声呐宽带自适应波束形成算法。该算法首先将常规Keystone变换应用于宽带阵列信号的相位对齐,接着采用自回归模型对变换后各频段缺失的阵元数据进行预测补偿,最后通过稳健自适应波束形成处理获得目标方位输出结果。仿真实验结果表明,基于提升Keystone变换的宽带自适应波束形成算法性能优于常规Keystone自适应算法、指向最小方差自适应算法和聚焦自适应算法。
关键词:宽带自适应波束形成/
Keystone变换/
自回归模型
Abstract:Keystone transform is an effective broadband array signal pre-processing method, but it has a main problem of array data missing. In order to solve this problem, an enhanced Keystone transform algorithm, which combines the autoregression model with traditional Keystone transform, is proposed in this paper for sonar broadband adaptive beamforming. After phase alignment of broadband array signal using traditional Keystone transform, autoregression models for each frequency are constructed to compensate the missing array data. Then, a robust adaptive beamforming approach is utilized to obtain the target bearing results. The results of simulation studies indicate that the proposed broadband adaptive beamforming algorithm based on enhanced Keystone transform outperforms the beamforming algorithms based on traditional Keystone transform, steered minimum variance and frequency focusing.
Key words:Broadband adaptive beamforming/
Keystone transform/
Autoregression model
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=03c884b4-94e7-4ccd-8ea5-9d0a4b5d8fd8