贺忠良1,
连峰2,
李晨3
1.兰州理工大学电气工程与信息工程学院 ??兰州 ??730050
2.西安交通大学电子与信息工程学院 ??西安 ??710049
3.西安交通大学软件学院 ??西安 ??710049
基金项目:国家自然科学基金( 61873116, 61370037, 61763029),甘肃省科技计划项目(18YF1GA065, 18JR3RA137)
详细信息
作者简介:陈辉:男,1978年生,教授,博士生导师,主要研究方向为目标跟踪和传感器管理
贺忠良:男,1993年生,硕士生,研究方向为多目标跟踪中的传感器管理
连峰:男,1981年生,副教授,博士生导师,主要研究方向为多源信息融合、多目标跟踪
李晨:女,1981年生,讲师,主要研究方向为目标跟踪
通讯作者:陈辉 huich78@hotmail.com
中图分类号:TP274计量
文章访问数:906
HTML全文浏览量:431
PDF下载量:46
被引次数:0
出版历程
收稿日期:2018-03-05
修回日期:2018-08-13
网络出版日期:2018-08-23
刊出日期:2018-12-01
Threat Assessment Based Sensor Control for Multi-target Tracking
Hui CHEN1,,,Zhongliang HE1,
Feng LIAN2,
Chen LI3
1. School of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2. School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
3. School of Software Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Funds:The National Natural Science Foundation of China ( 61873116, 61370037, 61763029), The Gansu Provincial Science and Technology Planning (18YF1GA065, 18JR3RA137)
摘要
摘要:该文基于随机有限集的多目标滤波器提出一种基于目标威胁度评估的传感器控制策略。首先,在部分可观测马尔科夫决策过程(POMDP)的理论框架下,给出基于信息论的传感器控制一般方法。其次,结合目标运动态势对影响目标威胁度的因素进行分析。然后,基于粒子多目标滤波器估计多目标状态,依据多目标运动态势的评估研究建立多目标威胁水平,并从多目标分布特性中深入分析并提取出当前时刻最大威胁度目标的分布特性。最后,利用Rényi散度作为传感器控制的评价指标,以最大威胁度目标的信息增益最大化为准则进行最终控制方案的求解。仿真实验验证了该方法的实用性和有效性。
关键词:多目标跟踪/
目标威胁度/
战术重要性标绘/
传感器控制/
部分可观测马尔科夫决策过程
Abstract:This paper proposes a threat assessment based sensor control by using multi-target filter with random finite set. First, the general sensor control approach based on information theory is presented in the framework of Partially Observable Markov Decision Process (POMDP). Meanwhile, combined with target movement situation, the factors that affect the target threat degree are analyzed. Then, the multi-target state is estimated based on the particle multi-target filter, the multi-target threat level is established according to the multi-target motion situation, and the maximum threat target distribution characteristic is analyzed and extracted from the multi-target distribution characteristic. Finally, the Rényi divergence is used as the evaluation index in sensor control, and the final control policy is solved with the maximum information gain as the criterion. The simulation results verify the feasibility and effectiveness of the proposed method.
Key words:Multi-target tracking/
Target threat degree/
Tactical significance map/
Sensor control/
Partially Observable Markov Decision Process (POMDP)
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=298c86d0-5cb9-421d-8423-0a8ba4579480