杨璟茂1, 2, 3,,,
岳琦1, 2, 3,
张汉良1, 2, 3
1.中国科学院电子学研究所 ??北京 ??100190
2.微波成像技术国家级重点实验室 ??北京 ??100190
3.中国科学院大学 ??北京 ??100049
详细信息
作者简介:吕晓德:男,1969年生,研究员,博士生导师,研究方向为基于阵列技术的新体制雷达系统及其应用
杨璟茂:男,1992年生,硕士生,研究方向为机载双基雷达杂波抑制
岳琦:男,1992年生,硕士生,研究方向为机载双基雷达杂波抑制
张汉良:男,1992年生,硕士生,研究方向为基于4G信号的外辐射源雷达
通讯作者:杨璟茂 yangjingmao@live.com
中图分类号:TN959.73计量
文章访问数:1144
HTML全文浏览量:445
PDF下载量:35
被引次数:0
出版历程
收稿日期:2018-01-16
修回日期:2018-08-13
网络出版日期:2018-08-22
刊出日期:2018-11-01
Airborne Bistatic Radar Clutter Suppression Based on Sparse Bayesian Learning
Xiaode Lü1, 2,Jingmao YANG1, 2, 3,,,
Qi YUE1, 2, 3,
Hanliang ZHANG1, 2, 3
1. Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
2. National Key Laboratory of Science and Technology on Microwave Imaging, Beijing 100190, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
摘要
摘要:机载双基雷达杂波与构型有关且具有严重的距离依赖性,因此杂波脊复杂多变,独立同分布(IID)的样本很少。传统的空时自适应处理(STAP)方法受独立同分布样本数的限制,对机载双基雷达杂波的抑制性能有限。基于机载雷达杂波在角度-多普勒域分布的稀疏特性和稀疏贝叶斯学习(SBL)在稀疏信号重建方面的优势,该文将SBL算法应用于较为复杂的机载双基雷达双动模式下杂波抑制,该方法可以用少量训练单元杂波估计待测距离单元的杂波协方差矩阵(CCM),然后进行空时自适应处理;同时,该算法不需要样本独立同分布,在双基双动模式下对杂波的抑制性能较好,仿真结果验证了算法的有效性。
关键词:杂波抑制/
稀疏重建/
空时自适应处理/
稀疏贝叶斯学习
Abstract:Clutter of airborne bistatic radar is related to configuration and has serious range dependence characteristic, therefore the clutter ridge is complex and variable, and few Independent and Identically Distributed (IID) samples exist. As the result, the traditional Space-Time Adaptive Processing (STAP) has a degraded suppression performance for airborne bistatic radar clutter. Based on the sparsity of airborne radar clutter in the angle-Doppler domain and the advantages of Sparse Bayesian Learning (SBL) in sparse signal reconstruction, SBL algorithm is applied to the more complex airborne bistatic radar with both transmitter and receiver moving. The method can estimate the Clutter Covariance Matrix (CCM) of the unit under test with very few training samples, then perform space-time adaptive processing. Since the method does not need independent and identically distributed samples, it has better performance of clutter suppression in the airborne bistatic radar with both transmitter and receiver moving. Simulation results verify the effectiveness of the algorithm.
Key words:Clutter suppression/
Sparse signal reconstruction/
Space-Time Adaptive Processing (STAP)/
Sparse Bayesian Learning (SBL)
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=1c1591da-5a96-4953-9257-eb5bcc1b68a3