叶面积指数LAI(Leaf Area Index)是调节植被冠层生理过程的最重要的生物物理变量之一,高空间分辨率时间序列LAI对于植被生长检测、地表过程模拟与区域和全球变化研究至关重要,但是由于数据缺失和反演方法限制,目前还没有时空连续的高分辨率LAI数据产品。本研究提出了一种生成时间连续的高空间分辨率LAI数据的算法,首先对MODIS LAI产品滤波平滑,生成时间序列LAI的上包络曲线,根据上包络曲线提供的变化信息构建LAI动态模型。然后利用地面实测的LAI数据与Landsat反射率数据构建LAI反演的BP (Back Propagation)神经网络模型。将反演得到的高分辨率LAI数据作为LAI观测数据,利用集合卡尔曼滤波EnKF(Ensemble Kalman Filter)方法实时更新动态模型,生成时间连续的30 m空间分辨率LAI数据集。基于该算法生成了塞罕坝地区2000年—2018年长时间序列LAI数据集,利用Prophet深度学习模型进行模拟和预测,根据预测和原始LAI差异,利用支持向量机SVM(Support Vector Machine)方法检测植被干扰状况。结果表明:EnKF算法能够生成时空连续的高空间分辨率LAI数据,估算结果与地面测量值一致性较高,
R2为0.9498,RMSE为0.1577,在区域尺度上与Landsat LAI参考值较为吻合,
R2高于0.87,RMSE低于0.61。Prophet与SVM模型检测到研究区2009年,2010年,2013年,2014年, 2015年植被受干扰较为严重,主要由于年降水量偏少和林区作业砍伐造成,检测结果与当地降水量与砍伐数据吻合。本文提出的算法可用于大范围高时空LAI数据反演和植被变化检测,对塞罕坝乃至全国林区规划管理具有重要的参考价值。
PDF全文下载地址:
http://www.ygxb.ac.cn/rc-pub/front/front-article/download?id=8927277