1.Institute of Theoretical Physics, Shanxi Datong University, Datong 037009, China 2.School of Mathematics and Statistics, Shanxi Datong University, Datong 037009, China Received Date:2020-12-04 Available Online:2021-04-15 Abstract:In this paper, we consider $ (n+1) $-dimensional topological dilaton de Sitter black holes with a power-Maxwell field as thermodynamic systems. The thermodynamic quantities corresponding to the black hole horizon and the cosmological horizon are interrelated. Therefore, the total entropy of the space-time should be the sum of the entropies of the black hole horizon and the cosmological horizon plus a correction term which is produced by the association of the two horizons. We analyze the entropic force produced by the correction term at given temperatures, which is affected by the parameters and dimensions of the space-time. It is shown that the change of entropic force with the position ratio of the two horizons in some regions is similar to that of the variation of the Lennard-Jones force with the position of particles. If the effect of entropic force is similar to that of the Lennard-Jones force, and other forces are absent, the motion of the cosmological horizon relative to the black hole horizon should have an oscillating process. The entropic force between the two horizons is probably one of the participants in driving the evolution of the universe.
HTML
--> --> -->
II.BLACK HOLE SOLUTION OF EINSTEIN POWER-MAXWELL-DILATON FIELDS IN DS SPACE-TIMEIn this section, we introduce the action of Einstein power-Maxwell-dilaton (EPMD) gravity, the solutions of the EPMD field equations, and the mass, electric charge, and cosmological constant of EPMD black holes in dS space-time. The action of $ (n+1) $-dimensional $ (n\geqslant 3) $ EPMD gravity can be written as [50, 59, 65-67]
which can yield the following field equations by taking the action as varying with respect to the gravitational field $ g_{\mu,\nu} $, dilaton field $ \phi $ and the gauge field $ F_{\mu,\nu} :$
where R is the Ricci scalar, $ V(\Phi ) $ is a potential for $ \Phi $, and p and $ \alpha $ are two constants determining the nonlinearity of the electromagnetic field and the strength of coupling of the scalar and electromagnetic fields, respectively. $ {F_{\mu \nu }} = {\partial _\mu }{A_\nu } - {\partial _\nu }{A_\mu } $ is the electromagnetic field tensor and $ {A_\mu } $ is the electromagnetic potential. The topological black hole solutions take the form [50, 59, 65-67]
in which b is an arbitrary nonzero positive constant, $ \gamma = {\alpha ^2}/({\alpha ^2} + 1) $, and $ \Pi = {\alpha ^2} + (n - 1 - {\alpha ^2})p $. Note that $ \Lambda $ remains a free parameter and $ {\Lambda}>0 $ in dS space-time. It plays the role of the cosmological constant,
where l denotes the AdS length scale. In Eq. (5), m appears as an integration constant and is related to the ADM (Arnowitt-Deser-Misner) mass of the black hole. According to the definition of mass given by Abbott and Deser [68-72], the mass of the solution in Eq. (5) is [73]
The fact that the electric potential U should have a finite value at infinity and the term including m in the solution $ f(r) $ in spatial infinity should vanish lead to restrictions on p and $ \alpha $ [61]:
$ \frac{1}{2}<p<\frac{n+\alpha ^{2}}{2}. $
(9)
$ \alpha ^{2}<n-2. $
(10)
III.THERMODYNAMIC QUANTITIES OF THE TWO HORIZONS OF EPMD BLACK HOLES IN DS SPACE-TIMEdS black holes have two horizons, the black hole event horizon (BEH) and the cosmological event horizon (CEH). The BEH is located at $ r = {r_ + } $ and the CEH is located at $ r = {r_c} $. Their positions can be determined by $ f({r_ + }) = 0 $ and $ f({r_c}) = 0 $ respectively. The thermodynamic quantities of the BEH and CEH each satisfy the first law of thermodynamics [3, 8, 13]. In this section, we introduce the thermodynamic quantities corresponding to the BEH and CEH respectively. Replacing r in Eq. (8) with $ r_+ $ or $ r_c $, one can get the electric potentials of the BEH or CEH. The surface gravities of the BEH and CEH are respectively given by:
from which the radiation temperatures of the two horizons can be obtained from $ T_{+,c} = {\kappa _{+,c}}/{4\pi} $. When $ f({r_{ + /c}}) = 0 $, we have:
$ m({r_ + }) = m({r_ c }) = m $, and taking $ x = {r_+ }/{r_c} $ as the ratio of the positions of BEH and CEH, which satisfies $ 0 < x \leqslant 1 $, then:
where $ {\omega _{n - 1}} $ represents the volume of constant curvature hypersurface described by $ {\rm d}\Omega _{k,n - 1}^2 $. The entropies of BEH and CEH in dS space are expressed respectively as:
IV.EFFECTIVE THERMODYNAMICS AND MODIFIED ENTROPY OF EPMD BLACK HOLES IN DS SPACE-TIMEIn general, the radiation temperatures of the BEH and CEH are different. So, If one investigates the black hole in dS space-time including BEH and CEH as a whole thermodynamic system, it is usually thermodynamically unstable or in non-equilibrium. We find that the radiation temperatures are equal if the charge of the system satisfies some condition. Under that condition, considering the correlation of the two horizons, we derive the effective thermodynamic quantities and the modified entropies of EPMD black holes in dS space-time. When the radiation temperatures of BEH and CEH are equivalent, $ {\kappa _ + } = {\kappa _c} $, then Eq. (11) and Eq. (12) with Eq. (14) give the condition for the charge for the same radiation temperature of BEH and CEH,
Taking the EPMD dS space-time as a thermodynamic system, in Refs. [1, 3, 12, 16, 50, 67], the thermodynamic volume of the EPMD dS space-time is given by
$ V = {V_c} - {V_ + }. $
(23)
Considering the correlation of BEH and CEH, we assume that the entropy of the EPMD dS space-time is expressed as
where $ {f_{AB}}(x) $ is an arbitrary function of x. Using the effective thermodynamic quantities, the state parameters of the thermodynamic system satisfy the formula of the first law of thermodynamics, i.e.,
where the effective temperature $ {T_{\rm eff}} $, the effective pressure $ {P_{\rm eff}} $ and the effective potential $ {\Phi _{\rm eff}} $ of the EPMD dS black hole system are respectively defined as:
When $ T = {T_ + } = {T_c} $, which means the dS black hole thermodynamic system including BEH and CEH are in thermodynamic equilibrium, the effective temperature of the space-time should be equal to the radiation temperatures of the BEH and CEH. So, when the charge of the space-time $ {q^{2p}} $ is expressed by Eq. (18), $ {T_{\rm eff}} = {\tilde T_{\rm eff}}{\rm{ = }}{T_ + } = {T_c} $. Substituting Eq. (18) into Eq. (26) gives
From Eq. (32) and Eq. (28), a differential equation for $ {F_n}(x) $ can be obtained. Taking the initial condition as $ {F_n}(0) = 1 $, i.e. $ {f_{AB}}(0) = 0 $, indicates that the interaction between the two horizons is zero when $ x = 0 $, and the solutions of the differential equation are
In order to describe the behaviors of the entropic force created by the interaction between the BEH and CEH and the effect of the parameters of the MPMD dS space-time on the entropic force, the solutions for the entropic force $ F(x) $ with different parameters, n, $ \alpha $, p and $ \kappa $ are depicted in the following figures, where we have taken
Figures 1-4 show the change of entropic force with x as each spacetime parameter takes different values. If the effect of entropic force is same as that of normal forces, from the four $ F(x)-x $ figures, it is clear that the entropic force tends to infinity with $ x \to 1 $, which means that when the BEH is close to the CEH in the dS space-time, the two horizons will separate from each other due to the entropic force with a corresponding large acceleration provided the other forces are absent. This agrees with the present viewpoint on early cosmic inflation. When the value of x reduces from 1, the entropic force between the two horizons decreases until it reaches a minimum, and at $ x = {x_1} $ in the interval, the entropic force is zero, which can be interpreted as the interaction between the two horizons being absent at $ x = {x_1} $. However, the two horizons may remain separate. When the value of x reduces gradually, the value of the entropic force temporarily remains negative, which means that the separation of the two horizons is decelerated and can be interpreted as decelerated cosmic expansion. If the expansion speed decelerates to zero before x reaches a minimum at $ x = {x_2} $, the two horizons will be in a relative oscillatory motion with the equilibrium position $ x = {x_1} $ under the circumstance that no other forces exist. In the four $ F(x)-x $ figures, when x reduces from $ x = {x_2} $, the value of the entropic force tends to zero in the negative territory before it turns positive (indicating repulsive force) at $ x = {x_3} $, except for the blue dot-dashed curve in Fig. 4. In the region of smaller x, the behaviors of the entropic force are complicated. Most of curves in the four $ F(x)-x $ figures go through their singularities and from positive to negative with decreasing x. However, the singularity disappears on the black solid curves in Fig. 2, which corresponds to the situations of smaller n with $ n = 3 $, smaller $ \alpha $ with $ \alpha = 0 $, smaller p with $ p = 1.3 $, and smaller $ \kappa $ with $ \kappa = 0.001 $. Besides that, when $ \kappa $ is bigger the behavior of the entropic force is different, which can be seen from the blue dot-dashed curve in Fig. 4. These $ F(x)-x $ curves indicate that the behavior of entropic force is affected by the parameters n, $ \alpha $, p and $ \kappa $. That is, it is influenced by the dimension of the space-time, the nonlinearity of the electromagnetic field, the strength of coupling of the dilaton scalar and electromagnetic field, the position of the cosmological horizon, and the electric charge of the black hole. In all these cases of the four figures, the behaviors of the entropic force near $ x = {x_1} $, or in the region of $ 1>x>x_3 $, are similar to that of the Lennard-Jones force between two particles [74-76]. They are similar but obtained in completely different ways. This indicates that the entropic force between the two horizons has a certain internal relationship with the Lennard-Jones force between two particles. More investigations and evidence are needed to consider the fate of the accelerated expanding universe, whether the entropic force between the BEH and CEH is one of the participant forces which drive the evolution of the universe, and whether the entropic force has the same effect as the Lennard-Jones force. Figure1. (color online) $ F(x)-x $ curve with different values of n for $ \alpha=0.3 $, $ p=1.3 $ and $ \kappa=0.001 $.
Figure3. (color online) $ F(x)-x $ curve with different values of p for $ n = 5 $, $ \alpha = 0.5 $ and $ \kappa = 0.001 $.
Figure4. (color online) $ F(x)-x $ curve with different values of the parameter $ \kappa $ for $ n = 3 $, $ \alpha = 0.3 $ and $ p = 1.3 $.
Figure2. (color online) $ F(x)-x $ curve with different values of $ \alpha $ for $ n=3 $, $ p=1.3 $ and $ \kappa=0.001 $.