1.Junior College, Zhejiang Wanli University, Zhejiang 315101, China 2.Physics Department, Ningbo University, Zhejiang 315211, China 3.Department of Physics, Yantai University, Yantai 264005, China 4.College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China Received Date:2020-04-24 Available Online:2020-10-01 Abstract:In this work, we study the localized $ CP $ violation and the branching fraction of the four-body decay $ \bar{B}^0\rightarrow K^-\pi^+\pi^-\pi^+ $ by employing a quasi-two-body QCD factorization approach. Considering the interference of $ \bar{B}^0\rightarrow \bar{K}_0^*(700)\rho^0(770)\rightarrow K^-\pi^+\pi^-\pi^+ $ and $ \bar{B}^0\rightarrow \bar{K}^*(892)f_0(500)\rightarrow K^-\pi^+\pi^-\pi^+ $ channels, we predict $ \mathcal{A_{CP}}(\bar{B}^0\rightarrow K^-\pi^+\pi^-\pi^+)\in [0.15,0.28] $ and $ {\cal{B}}(\bar{B}^0\rightarrow K^-\pi^+\pi^-\pi^+)\in[1.73,5.10]\times10^{-7} $, respectively, which shows that the interference mechanism of these two channels can induce the localized $ CP $ violation to this four-body decay. Meanwhile, within the two quark model framework for the scalar mesons $ f_0(500) $ and $ \bar{K}_0^*(700) $, we calculate the direct CP violations and branching fractions of the $ \bar{B}^0\rightarrow \bar{K}_0^*(700)\rho^0(770) $ and $ \bar{B}^0\rightarrow \bar{K}^*(892)f_0(500) $ decays, respectively. The corresponding results are $ \mathcal{A_{CP}}(\bar{B}^0\rightarrow \bar{K}_0^*(700)\rho^0(770)) \in [0.20, 0.36] $, $ \mathcal{A_{CP}}(\bar{B}^0\rightarrow \bar{K}^*(892)f_0(500))\in [0.08, 0.12] $, ${\cal{B}} (\bar{B}^0\rightarrow \bar{K}_0^*(700) \rho^0(770)\in [6.76, 18.93]\times10^{-8}$ and $ {\cal{B}} (\bar{B}^0\rightarrow \bar{K}^*(892)f_0(500))\in [2.66, 4.80]\times10^{-6} $, indicating that the $ CP $ violations of these two-body decays are both positive and the branching fractions quite different. These studies provide a new way to investigate the aforementioned four-body decay and can be helpful in clarifying the configuration of the structure of the light scalar meson.
HTML
--> --> --> -->
2.1.Kinematics of the four-body decay
The kinematics of the process $ \bar{B}^0\rightarrow K^-(p_1)\pi^+ (p_2) \pi^-(p_3)\pi^+(p_4) $ is described in terms of the five variables displayed in Fig. 1 [24, 25] in which Figure1. The reference frames and the kinematic variables in the $ \bar{B}^0\rightarrow K^-\pi^+\pi^-\pi^+ $ decay.
(i) the invariant mass squared of the $ K\pi $ system is $ s_{K\pi} = (p_1+p_2)^2 = m_{K\pi}^2 $; (ii) the invariant mass squared of the $ \pi\pi $ system is$ s_{\pi\pi} = (p_3+p_4)^2 = m_{\pi\pi}^2 $; (iii) $ \theta_\pi $ is the angle of the $ \pi^+ $ in the $ \pi^-\pi^+ $ center-of-mass frame $ \Sigma_{\pi\pi} $ with respect to the $ \pi s $' line of flight in the $ \bar{B}^0 $ rest frame $ \Sigma_{\bar{B}^0} $; (iv) $ \theta_K $ is the angle of the $ K^- $ in the $ K\pi $ center-of-mass system $ \Sigma_{K\pi} $ with respect to the $ K\pi $ line of flight in $ \Sigma_{\bar{B}^0} $; (v) $ \phi $ is the angle between the $ K\pi $ and $ \pi\pi $ planes. The physical ranges are
We consider the localization of $ CP $ violation of the $ \bar{B}^0\rightarrow K^-(p_1)\pi^+(p_2)\pi^-(p_3)\pi^+(p_4) $ decay when the invariant mass of $ \pi\pi $ is near the masses of $ f_0(500) $ (including $ \rho^0(770) $), and the invariant mass of $ K\pi $ is near the masses of $ \bar{K}_0^*(700) $ (including $ \bar{K}^*(892) $). We adopt
In Eq. (2), $ m_{f_0(500)} $ and $ m_{\bar{K}_0^*(700)} $ are the masses of $ f_0(500) $ and $ \bar{K}_0^*(700) $ mesons, respectively; $ \Gamma_{f_0(500)} $ and $ \Gamma_{\bar{K}_0^*(700)} $ are the widths of the corresponding mesons. Instead of the individual momenta $ p_1 $, $ p_2 $, $ p_3 $, $ p_4 $, it is more convenient to use the following kinematic variables
$ \begin{split} & P = p_1+p_2,\quad Q = p_1-p_2,\\ & L = p_3+p_4,\quad N = p_3-p_4. \end{split} $
where $ G_F $ represents the Fermi constant, $ \lambda_p^{(D)} = V_{pb}V_{pD}^* $, $ V_{pb} $ and $ V_{pD} $ are the CKM matrix elements, $ c_i (i = 1 -10,7\gamma,8g) $ are Wilson coefficients, $ O_{1,2}^p $ are the tree level operators, $ O_{3-6} $ are the QCD penguin operators, $ O_{7-8} $ arise from electroweak penguin diagrams, and $ O_{7\gamma} $ and $ O_{8g} $ are the electromagnetic and chromomagnetic dipole operators, respectively. With the effective Hamiltonian in Eq. (6), the QCDF method has been fully developed and extensively employed to calculate the hadronic two-body B decays. The spectator scattering and annihilation amplitudes are expressed with the convolution of scattering functions and the light-cone wave functions of the participating mesons [6]. The explicit expressions for the basic building blocks of the spectator scattering and annihilation amplitudes have been given in Ref. [6] and are also listed in Appendix A for convenience. The annihilation contributions $ A_n^{i,f} $ ($ n = 1,2,3 $) can be simplified as [26]
for $ M_1M_2 = SV $, where the superscripts $ i $ and $ f $ refer to gluon emission from the initial and final state quarks, respectively. The model-dependent parameter $ X_A $ is used to estimate the end-point contributions and expressed as
with $ \Lambda_h $ being a typical scale of order 500 $ \mathrm{MeV} $, $ \rho_A $ an unknown real parameter, and $ \phi_A $ the free strong phase in the range $ [0,2\pi] $. For the spectator scattering contributions, the calculation of twist-3 distribution amplitudes also suffers from the end-point divergence, which is usually dealt with in the same manner as in Eq. (9) and labeled by $ X_H $. In our work, when dealing with the end-point divergences from the hard spectator scattering and weak annihilation contributions, we will follow the assumption $ X_H = X_A $ for the $ B $ two-body decays [20]. 22.3.Four-body decay amplitudes and localized CP violation -->
2.3.Four-body decay amplitudes and localized CP violation
For the $ \bar{B}^0\rightarrow K^-\pi^+\pi^-\pi^+ $ decay, we consider the contributions from $ \bar{B}^0\rightarrow \bar{K}_0^*(700)\rho^0(770)\rightarrow K^-\pi^+\pi^-\pi^+ $ and $ \bar{B}^0\rightarrow \bar{K}^*(892)f_0(500)\rightarrow K^-\pi^+\pi^-\pi^+ $ channels. For convenience, $ f_0(500) $, $ \rho^0(770) $, $ \bar{K}_0^*(700) $ and $ \bar{K}^*(892) $ mesons will be denoted as $ \sigma $, $ \rho $, $ \bar{\kappa} $ and $ \bar{K}^* $, respectively. The amplitudes of these two channels are
respectively, where $ {\cal{H}}_{\rho\pi^+\pi^-} $, $ {\cal{H}}_{\sigma\pi^+\pi^-} $, $ {\cal{H}}_{\bar{\kappa}K^-\pi^+} $ and $ {\cal{H}}_{\bar{K}^*K^-\pi^+} $ are strong Hamiltonians for $ \rho\rightarrow\pi^-\pi^+ $, $ \sigma\rightarrow\pi^-\pi^+ $, $ \bar{\kappa}\rightarrow K^-\pi^+ $ , and $ \bar{K}^*\rightarrow K^-\pi^+ $ decays, respectively. $ S_{\bar{\kappa}} $, $ S_{\rho} $, $ S_{\bar{K}^*} $, and $ S_{\sigma} $ are the reciprocals of the dynamical functions of the corresponding mesons. Since the width of $ \sigma $ is larger than the other three mesons, we shall adopt the Breit-Wigner function and the Bugg model [27, 28] to deal with the distributions of the first three mesons ($ \bar{\kappa} $, $ \rho $ and $ \bar{K}^* $) and $ \sigma $ meson, respectively. In the Breit-Wigner model, $ S_{k} $ takes the form $ S-m_k^2+im_k\Gamma_k $, $ k = 1,2,3 $ corresponding to $ {\bar{\kappa}} $, $ \rho $ and $ \bar{K}^* $ mesons. $ S = s_{\pi\pi} $ or $ S = s_{K\pi} $ when dealing with $ \pi\pi $ or $ K\pi $ systems. The Bugg model is used to parameterize the distribution of $ \sigma $ [27, 28],
where we abbreviate $ s_{\pi\pi} $ as $ s $, related parameters are fixed to be $ M = 0.953\; \mathrm{GeV} $, $ s_A = 0.14m_\pi^2 $, $ c_1 = 1.302\;\mathrm{GeV}^2 $, $ c_2 = 0.340 $, $ A = 2.426\;\mathrm{GeV}^2 $ and $ g_{4\pi} = 0.011\;\mathrm{GeV} $, as given in the fourth column of Table I in Ref. [27]. The parameters $ \rho_{1,2,3} $ are the phase-space factors of the decay channels $ \pi\pi $, $ KK $ and $ \eta\eta $, respectively, which are defined as [27]
with $ m_1 = m_\pi $, $ m_2 = m_K $ and $ m_3 = m_\eta $. When dealing with the final state interactions, unitarized chiral perturbation theory is an effective method; they have been studied in Refs. [29-32]. Now we will adopt the method in Refs. [7, 28]
respectively, where $ g_{VM_1M_2} $ and $ g_{SM_1M_2} $ are the strong coupling constants of the corresponding vector and scalar meson decays, respectively. Generally, these coupling constants can be derived from experiments, which have been listed in Eq. (C4). Within the QCDF framework in Ref. [6], we can get the decay amplitudes of $ \bar{B}^0\rightarrow \bar{\kappa}\rho, \bar{K}^*\sigma $, which have been listed in Appendix B. Combining Eqs. (35), (15) and (10), (B2), (16) and (11), respectively, the amplitudes of $ \bar{B}^0\rightarrow \bar{\kappa}\rho\rightarrow K^-\pi^+\pi^-\pi^+ $ and $ \bar{B}^0\rightarrow \bar{K}^*\sigma\rightarrow K^-\pi^+\pi^-\pi^+ $ channels can be written as
respectively, where $ g_{\bar{\kappa}K\pi} $, $ g_{\rho\pi\pi} $, $ g_{\bar{K}^*K\pi} $, $ g_{\sigma \pi\pi} $ are the strong coupling constants of the corresponding decays, which are listed in Eq. (C4); $ F_1^{\bar{B}^0 \bar{\kappa}}(m_{\rho}^2) $, $ A_0^{\bar{B}^0\rho}(m_{\bar{\kappa}}^2) $, $ A_0^{\bar{B}^0 \bar{K}^*}(m_\sigma^2) $ and $ F_1^{\bar{B}^0\sigma}(m_{\bar{K}^*}^2) $ are form factors for $ \bar{B}^0 $ to $ \bar{\kappa} $, $ \rho $, $ \bar{K}^* $ and $ \sigma $ transitions, respectively; $ f_\rho $, $ \bar{f}_{\bar{\kappa}} $, $ f_{\bar{B}^0} $ and $ f_{\bar{K}^*} $ are decay constants of $ \rho $, $ \bar{\kappa} $, $ \bar{B}^0 $ and $\bar{K}^*$ mesons, respectively; $ \bar{f}_{\sigma^s} $ and $ \bar{f}_\sigma^n $ are decay constants of $ \sigma $ coming from the up and strange quark components, respectively. There can be a relative strong phase $ \delta $ between the two interference amplitudes, the value of which depends on experimental data and theoretical models. Since little information about $ \delta $ can be provided by experiments, we choose to adopt the same method as that in Refs. [7, 33, 34], i.e., setting $ \delta = 0 $. The total decay amplitude of the $ \bar{B}^0\rightarrow K^-\pi^+\pi^+\pi^- $ including both $ \bar{B}^0\rightarrow \bar{\kappa}\rho\rightarrow K^-\pi^+\pi^+\pi^- $ and $ \bar{B}^0\rightarrow \bar{K}^*\sigma\rightarrow K^-\pi^+\pi^+\pi^- $ channels can be written as
where $ \Omega $ represents the phase space given in Eq. (2) with ${\rm d}\Omega = {\rm d}s_{\pi\pi}{\rm d}s_{K\pi}{\rm d}\cos\theta_\pi {\rm d}\cos\theta_K {\rm d}\phi$. As for the decay rate, one has [13]
for $ i = 5,7 $ and $ H_i = 0 $ for $ i = 6,8 $, $ \bar{\xi} = 1-\xi $ and $ \bar{\eta} = 1-\eta $, $ \Phi_M(\Phi_m) $ is the twist-2 (twist-3) light-cone distribution amplitude of the meson $ M $, and
where $ C_m^{3/2} $ and $ P_m $ are the Gegenbauer and Legendre polynomials in Eq. (A5) and Eq. (A6), respectively, $ \alpha_m(\mu) $ are Gegenbauer moments, which depend on the scale $ \mu $. The twist-2 light-cone distribution amplitude for a scalar meson is [20, 26]
where $ B_m $ are Gegenbauer moments, $ \bar{f}_S $ is the decay constant of the scalar meson, $ n $ denotes the $ u $, $ d $ quark component of the scalar meson, $ n = \frac{1}{\sqrt{2}}(u\bar{u}+d\bar{d}) $, and $ s $ denotes the component $ s\bar{s} $. As for the twist-3 ones, we shall take the asymptotic forms [20, 26]
Appendix B: The amplitudes of $ \bar{B}^0\rightarrow \bar{K}_0^*\rho^0 $ and $ \bar{B}^0\rightarrow \bar{K}^*\sigma $ decaysWith the conventions in Ref. [11], we obtain the amplitudes for $ \bar{B}^0\rightarrow \bar{K}_0^*\rho^0, \bar{K}^*\sigma $ decays within the QCDF framework, which have the following forms:
Appendix C: Theoretical input parametersThe predictions obtained in the QCDF approach depend on many input parameters. The values of the Wolfenstein parameters are taken from Ref. [36]: $ \bar{\rho} = 0.117\pm0.021 $, $ \bar{\eta} = 0.353\pm0.013 $. The effective Wilson coefficients used in our calculations are taken from Ref. [28]:
where $ p_c(S,V) $ are the magnitudes of the three momenta of the final state mesons in the rest frame of S and V mesons, respectively. The following related decay constants (in $ \mathrm{GeV} $) are used [20, 35]: