删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Revisiting hidden-charm pentaquarks from QCD sum rules

本站小编 Free考研考试/2022-01-01

闂備胶绮崝妤呭箠閹捐鍚规い鏂垮⒔閸楁岸鎮楅敐搴濈盎缂佷緡鍣i弻鐔煎礂閼测晝鐓傞梺绋跨焿閹凤拷2濠电偞鍨堕幐绋棵洪妸鈺嬬稏闁圭儤顨嗛崵鈧梺鍛婂姦娴滅偤宕洪敓鐘崇厽闁靛繈鍊栧☉褔鏌i埄鍐噰闁诡啫鍥ч唶闁挎繂娲㈤崑鎺楁⒑閸濆嫬鈧綊鎮锋潏鈺傤潟闁跨噦鎷�
濠电姰鍨归悥銏ゅ炊瑜嶆慨銈夋⒑閸涘﹤绗掓俊顐g洴椤㈡棃濮€閵堝棭妫勯柣搴秵閸犳牠宕㈤幘顔界厸闁告洟娼ч悘锝嗐亜閹存繃澶勭紒瀣樀閸┾偓妞ゆ巻鍋撻柍璇查叄濡鹃亶鏌嶈閸撴瑩宕导瀛樺亯婵炲樊浜濋弲顒勬倶閻愮數鎽傞柛銈囧Т闇夋繝濠傚暣椤庢銇勯埞顓炲婵挳鏌¢崶鈺佹灁闁告瑢鍋撻梻浣哥秺濞佳嗐亹閻愮數绠旈柟鎯ь嚟閳绘梹鎱ㄥΟ璇插闁搞倧绠撻弻鐔虹矙閹稿孩鎮欓梺浼欑秮缁犳牕顕i鈶╂瀻闁归偊鍘剧粙鍕⒑閹稿海鈽夐柡鍫墴瀹曞綊濡歌婵ジ鏌涘☉姗堟敾缂佺姵甯為埀顒€鐏氬姗€鎮ч崱娴板洭宕稿Δ浣镐痪闂佺鎻梽鍕晬閺嶎厽鐓忛柛鈩冩礀椤b暜ee濠电姰鍨圭紞濠囧焵椤掍胶鈯曢柕鍡楀暣閺屾盯骞掗幋鐑嗘濡炪倖甯為崰鎰矙婵犲洦鍋愰柣銏㈡暩鏁堥梻浣稿悑濠㈡﹢宕导瀛樺亯闁告繂濯辨惔銏$秶妞ゆ劗鍠庢禍楣冩煛閸ャ劍鐨戦柣鐔叉櫅閳藉骞樼紙鐘卞濡炪倖娲濆▍鏇炨缚韫囨稑宸濇い鎾楀啯顔�20婵°倗濮烽崑鐘诲箵椤忓棙顫曟繝闈涱儏缁犳垿鏌ゆ慨鎰偓妤€鈻旈姀鐘嗙懓饪伴崘鈺婃%缂備礁顦顓㈠焵椤掆偓濠€閬嶅磻閻旂厧鏋侀柕鍫濐槹閸庡秹鏌涢弴銊ュ闁伙箑缍婇幃妤冩喆閸曨収鏆¢梺鍝勬閸嬫捇姊洪崫鍕垫Ч闁告梹鐗犻幃锟犳晬閸曨剙鐝伴梺闈涚箚閸撴繈鎮″▎鎰濠㈣泛顑嗙粈鈧悗娈垮櫍閺€鍗烆嚗閸曨偒鍚嬮柛鏇ㄥ幘濡叉垿姊洪崫鍕偓浠嬶綖婢跺本鍏滈柛顐f礃閺咁剟鎮橀悙闈涗壕缂佺姵甯″濠氬炊閿濆懍澹曢梺鑽ゅ枑濞叉垿鎳楃捄琛℃灁闁硅揪闄勯崕鎴︽倵閿濆骸骞樼紒鐘崇墵閺屸剝寰勫☉娆忣伓
Jia-Bing Xiang 1,
, Hua-Xing Chen 1,
, Wei Chen 2,
, Xiao-Bo Li 1,
, Xing-Qun Yao 1,
, Shi-Lin Zhu 3,4,5,
, 1.School of Physics and Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China
2.School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
3.School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
4.Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
5.Center of High Energy Physics, Peking University, Beijing 100871, China
Received Date:2018-04-16
Accepted Date:2018-12-04
Available Online:2019-03-01
Abstract:We revisit hidden-charm pentaquark states $ P_c(4380) $ and $ P_c(4450) $ using the method of QCD sum rules by requiring the pole contribution to be greater than or equal to 30% in order to better that the one-pole parametrization is valid. We find two mixing currents, and our results suggest that $ P_c(4380) $ and $ P_c(4450) $ can be identified as hidden-charm pentaquark states having $ J^P=3/2^- $ and $ 5/2^+ $, respectively. However, there still exist other possible spin-parity assignments, such as $ J^P=3/2^+ $ and $ J^P=5/2^- $, which must be clarified in further theoretical and experimental studies.

HTML

--> --> -->
1.Introduction
Many exotic hadrons have been discovered in the past decade owing to significant experimental progresses [1], such as the two hidden-charm pentaquark resonances $ P_c(4380) $ and $ P_c(4450) $ discovered by the LHCb Collaboration [2-5]. More exotic hadrons are likely to be observed in the future by BaBar, Belle, BESIII, CMS, and LHCb experiments, etc. They are new blocks of QCD matter, providing insights to deepen our understanding of the non-perturbative QCD, and their relevant theoretical and experimental studies have opened a new page for hadron physics [6-11].
In the past year, to investigate their nature, $ P_c(4380) $ and $ P_c(4450) $ have been studied using various methods and models. There are many possible interpretations, such as meson-baryon molecules [12-23], compact diquark-diquark-antiquark pentaquarks [24-27], compact diquark-triquark pentaquarks [28, 29], genuine multiquark states other than molecules [30-35], and kinematical effects related to thresholds and triangle singularity [36-40]. Their productions and decay properties are also interesting [41-53]. More extensive discussions can be found in Refs. [54-56].
The preferred spin-parity assignments for the $ P_c(4380) $ and $ P_c(4450) $ states were suggested to be $ (3/2^-, 5/2^+) $; however, some other assignments, such as $ (3/2^+, 5/2^-) $ and $ (5/2^+, 3/2^-) $, have also been suggested by the LHCb Collaboration [2]. It is useful to theoretically study all possible assignments to better understand their properties.
In this study, we use the method of QCD sum rule to study the possible spin-parity assignments of $ P_c(4380) $ and $ P_c(4450) $. However, first, we reinvestigate our previous studies on $ P_c(4380) $ and $ P_c(4450) $ [57, 58] by requiring the pole contribution (PC) to be greater than or equal to 30% in order to ensure that the one-pole parametrization is valid; this value was just 10% in our previous studies [57, 58]. Note that there have been some experimental data on exotic hadrons; however, they are not sufficient, and more experimental results are necessary to make our theoretical analyses more reliable.
The remainder of this paper is organized as follows: the above reinvestigation is presented in Section 2, numerical analyses are presented in Section 3, the investigation of hidden-charm pentaquark states of $ J^P = 3/2^+ $ and $ J^P = 5/2^- $ are provided in Section 4, and the results will be discussed and summarized in Section 5.
2.QCD sum rules analyses
All the local hidden-charm pentaquark interpolating currents have been systematically constructed in Refs. [57, 58]. Some of these currents were selected to perform QCD sum rule analyses. The results suggest that $ P_c(4380) $ and $ P_c(4450) $ can be interpreted as hidden-charm pentaquark states composed of anti-charmed mesons and charmed baryons. However, the analyses therein used one criterion, which was not optimized. The condition was that the PC should be greater than 10% to ensure that the one-pole parametrization was valid. This value is not so significant, and accordingly, the question arises whether we can find a larger PC to better ensure one-pole parametrization
In the present study, we try to answer this question to find better (more reliable) QCD sum rule results. In particular, we find the following two mixing currents:
$ \begin{split} J_{\mu, 3/2-} =& \cos\theta_1 \times \xi_{36\mu} + \sin\theta_1 \times \psi_{9\mu} \\ =& \cos\theta_1 \times [\epsilon^{abc} (u^T_a C \gamma_\nu \gamma_5 d_b) \gamma_\nu \gamma_5 c_c] [\bar c_d \gamma_\mu \gamma_5 u_d] \\ & + \sin\theta_1 \times [\epsilon^{abc} (u^T_a C \gamma_\nu u_b) \gamma_\nu \gamma_5 c_c] [\bar c_d \gamma_\mu d_d], \end{split} $
(1)
$ \begin{split} J_{\mu\nu, 5/2+} =& \cos\theta_2 \times \xi_{15\mu\nu} + \sin\theta_2 \times \psi_{4\mu\nu} \\ =& \cos\theta_2 \times [\epsilon^{abc} (u^T_a C \gamma_\mu \gamma_5 d_b) c_c] [\bar c_d \gamma_\nu u_d] \\ &+ \sin\theta_2 \times [\epsilon^{abc} (u^T_a C \gamma_\mu u_b) c_c] [\bar c_d \gamma_\nu \gamma_5 d_d] + \{ \mu \leftrightarrow \nu \}, \end{split} $
(2)
where $ a \cdots d $ are color indices; $ \theta_{1/2} $ are two mixing angles; $ J_{\mu, 3/2-} $ and $ J_{\mu\nu, 5/2+} $ have the spin-parity $ J^P = 3/2^- $ and $ 5/2^+ $, respectively. The four single currents, $ \xi_{36\mu} $, $ \psi_{9\mu} $, $ \xi_{15\mu\nu} $, and $ \psi_{4\mu\nu} $, were first constructed in Refs. [57, 58]. We can verify:
1) The current $ \xi_{36\mu} $ well couples to the S-wave $ [\Lambda_c(1P)\bar D_1] $, P-wave $ [\Lambda_c(1P)\bar D] $, P-wave $ [\Lambda_c\bar D_1] $, D-wave $ [\Lambda_c\bar D] $ channels, etc. Here, the $ \Lambda_c(1P) $ denotes the $ \Lambda_c(2593) $ of $ J^P = 1/2^- $ and $ \Lambda_c(2625) $ of $ J^P = 3/2^- $.
2) The current $ \psi_{9\mu} $ well couples to the S-wave $ [\Sigma_c \bar D^*] $ channel, etc.
3) The current $ \xi_{15\mu\nu} $ well couples to the S-wave $ [\Lambda_c(1P) \bar D^*] $, P-wave $ [\Lambda_c\bar D^*] $ channels, etc.
4) The current $ \psi_{4\mu\nu} $ well couples to the S-wave $ [\Sigma_c^* \bar D_1] $, P-wave $ [\Sigma_c^* \bar D] $ channels, etc.
We use the above two mixing currents, $ J_{\mu, 3/2-} $ and $ J_{\mu\nu, 5/2+} $, to perform QCD sum rule analyses; the results will be given in the next section. First, we briefly introduce our approach; interested readers can refer to Refs. [59-64] for further details.
First, we assume $ J_{\mu, 3/2-} $ and $ J_{\mu\nu, 5/2+} $ couple to physical states through
$ \langle 0 | J_{\mu, 3/2-} | X_{3/2-} \rangle = f_{X_{3/2-}} u_\mu (p), $
(3)
$ \langle 0 | J_{\mu\nu, 5/2+} | X_{5/2+} \rangle = f_{X_{5/2+}} u_{\mu\nu} (p), $
(4)
and write the two-point correlation functions as
$ \begin{split} &\Pi_{\mu \nu, 3/2-}\left(q^2\right) \\ &\;\; = i \int {\rm d}^4x {\rm e}^{{\rm i}q\cdot x} \langle 0 | T\left[J_{\mu, 3/2-}(x) \bar J_{\nu, 3/2-}(0)\right] | 0 \rangle \\ &\;\; = \left(\frac{q_\mu q_\nu}{q^2}-g_{\mu\nu}\right) (q\!\!\!\!/ + M_{X_{3/2-}}) \Pi_{3/2-}\left(q^2\right) + \cdots, \end{split} $
(5)
$ \begin{split} & \Pi_{\mu \nu \rho \sigma, 5/2+}\left(q^2\right) \\&\;\; = i \int {\rm d}^4x {\rm e}^{{\rm i}q\cdot x} \langle 0 | T\left[J_{\mu\nu, 5/2+}(x) \bar J_{\rho\sigma, 5/2+}(0)\right] | 0 \rangle \\ &\;\; = \left(g_{\mu\rho}g_{\nu\sigma} + g_{\mu\sigma} g_{\nu\rho} \right) (q\!\!\!\!/ + M_{X_{5/2+}}) \Pi_{5/2+}\left(q^2\right) + \cdots, \end{split} $
(6)
where $ \cdots $ contains non-relevant spin components.
Note that if the physical state has the opposite parity, the $ \gamma_5 $-coupling should be used [65-68]. For example, if
$ \langle 0 | J_{\mu, 3/2-} | X^\prime_{3/2+} \rangle = f_{X^\prime_{3/2+}} \gamma_5 u^\prime_\mu (p), $
(7)
then
$ \begin{split} &\Pi_{\mu \nu, 3/2+}\left(q^2\right) \\&\;\; = i \int {\rm d}^4x {\rm e}^{{\rm i}q\cdot x} \langle 0 | T\left[J_{\mu, 3/2-}(x) \bar J_{\nu, 3/2-}(0)\right] | 0 \rangle \\ &\;\; = \left(\frac{q_\mu q_\nu}{q^2}-g_{\mu\nu}\right) (q\!\!\!\!/ - M_{X_{3/2+}}) \Pi_{3/2+}\left(q^2\right) + \cdots . \end{split} $
(8)
Hence, we can compare terms proportional to $ {\bf{1}} \times g_{\mu\nu} $ and $ q\!\!\!\!/\times g_{\mu\nu} $ to determine the parity of $ X^{(\prime)}_{3/2\pm} $. Accordingly, in the present study, we use terms proportional to $ {\bf{1}} \times g_{\mu\nu} $ and $ {\bf{1}} \times g_{\mu\rho} g_{\nu\sigma} $ to evaluate masses of X’s, which are then compared with those proportional to $ q\!\!\!\!/ \times g_{\mu\nu} $ and $ q\!\!\!\!/\times g_{\mu\rho} g_{\nu\sigma} $ to determine their parity.
At the hadron level, we use the dispersion relation to rewrite the two-point correlation function as
$ \Pi(q^2)={\frac{1}{\pi}}\int^\infty_{s_<}\frac{{\rm Im} \Pi(s)}{s-q^2-i\varepsilon}{\rm d}s, $
(9)
where $ s_< $ is the physical threshold. Its imaginary part is defined as the spectral function, which can be evaluated by inserting the intermediate hadron states $ \sum_n|n\rangle\langle n| $, but adopting the usual parametrization of one-pole dominance for ground state X along with a continuum contribution:
$ \begin{split} \rho(s) \equiv & \frac{1}{\pi}{\rm Im}\Pi(s) = \sum_n\delta(s-M^2_n)\langle 0|J|n\rangle\langle n|{\bar J}|0\rangle \\ =& f_X^2\delta(s-m_X^2)+ {\rm{continuum}} . \end{split} $
(10)
At the quark and gluon level, we substitute Eqs. (1-2) in the two-point correlation functions (5-6), and calculate them using the method of operator product expansion (OPE). In the present study, we evaluate $ \rho(s) $ at the leading order on $ \alpha_s $, up to eight dimensions. For this, we calculated the perturbative term, quark condensate $ \langle \bar q q \rangle $, gluon condensate $ \langle g_s^2 GG \rangle $, quark-gluon condensate $ \langle g_s \bar q \sigma G q \rangle $, and their combinations $ \langle \bar q q \rangle^2 $ and $\langle \bar q q \rangle $$ \langle g_s \bar q \sigma G q \rangle $. We find that the D= 4 term $ m_c \langle \bar q q \rangle $ and the D= 6 term $ m_c \langle g_s \bar q \sigma G q \rangle $ are important power corrections to the correlation functions. Note that we assumed the vacuum saturation for higher dimensional operators such as $ \langle 0 | \bar q q \bar q q |0 \rangle \sim \langle 0 | \bar q q |0 \rangle \langle 0|\bar q q |0 \rangle $, and this can lead to some systematic uncertainties.
Finally, we perform the Borel transform at both the hadron and quark-gluon levels, and express the two-point correlation function as
$ \Pi^{(\rm all)}(M_B^2)\equiv\mathcal{B}_{M_B^2}\Pi(p^2) = \int^\infty_{s_<} {\rm e}^{-s/M_B^2} \rho(s) {\rm d}s . $
(11)
After assuming that the continuum contribution can be well approximated by the OPE spectral density above a threshold value $ s_0 $, we obtain the sum rule relation
$ M^2_X(s_0, M_B) = {\int^{s_0}_{s_<} {\rm e}^{-s/M_B^2} \rho(s) s {\rm d}s \over \int^{s_0}_{s_<} {\rm e}^{-s/M_B^2} \rho(s) {\rm d}s} . $
(12)
We use the mixing current $ J_{\mu, 3/2-} $ defined in Eq. (1) to perform sum rule analyses, and the terms proportional to $ {\bf{1}} \times g_{\mu\nu} $ are given in Eq. (13), where $ t_1 = \cos\theta_1 $ and $ t_2 = \sin\theta_1 $. The terms proportional to $q\!\!\!\!/\times g_{\mu\nu} $ are listed in Eq. (14), which are almost the same as the former ones, suggesting that the state coupled by $ J_{\mu, 3/2-} $ has the spin-parity $ J^P = 3/2^- $. Similarly, we use $ J_{\mu\nu, 5/2+} $ defined in Eq. (2) to perform sum rule analyses, and the terms proportional to $ {\bf{1}} \times g_{\mu\nu} $ and $ q\!\!\!\!/\times g_{\mu\nu} $ are listed in Eqs. (15) and (16), respectively. We find that its relevant state has the spin-parity $ J^P = 5/2^+ $. These two sum rules will be used to perform numerical analyses in the next section.
$ \begin{split} \rho_{3/2-, 1}(s) =& \rho^{\rm pert}_{3/2-, 1}(s) + \rho^{\langle\bar qq\rangle}_{3/2-, 1}(s) + \rho^{\langle GG\rangle}_{3/2-, 1}(s) + \rho^{\langle\bar qq\rangle^2}_{3/2-, 1}(s) + \rho^{\langle\bar qGq\rangle}_{3/2-, 1}(s) + \rho^{\langle\bar qq\rangle\langle\bar qGq\rangle}_{3/2-, 1}(s), \\ \rho^{\rm pert}_{3/2-, 1}(s) =& \displaystyle\frac{m_c}{3932160\pi^8}\int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^5 \times \displaystyle\frac{(1 - \alpha - \beta)^3 (\alpha + \beta + 3) \left(11 t_1^2-4 t_1 t_2+24 t_2^2\right)}{\alpha^5\beta^4} } \right\}, \\ \rho^{\langle\bar qq\rangle}_{3/2-, 1}(s) =& \displaystyle\frac{m_c^2\langle\bar qq\rangle}{3072\pi^6} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^3 \times \displaystyle\frac{(1 - \alpha - \beta)^2 \left(3 t_1^2-2 t_1 t_2-6 t_2^2\right)}{\alpha^3\beta^3} } \right\}, \\ \rho^{\langle GG\rangle}_{3/2-, 1}(s) =& - \displaystyle\frac{m_c\langle g_s^2GG\rangle}{28311552 \pi^8}\int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta\left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^3 \times \left( { \displaystyle\frac{432(1 - \alpha - \beta) (\alpha + \beta + 1) \left(t_1^2 + 2t_2^2\right)}{\alpha^3\beta^2} } \right.} \right. \\ & - \displaystyle\frac{12 (1 - \alpha - \beta)^2 (\alpha +\beta -4) \left(7 t_1^2-4 t_1t_2+16t_2^2\right)}{\alpha^3\beta^3} - \displaystyle\frac{36 (1 - \alpha - \beta)^2 (\alpha +\beta +2) \left(7 t_1^2-4 t_1 t_2+16 t_2^2\right)}{\alpha^4\beta^2} \\ &\left. { + \displaystyle\frac{(1 - \alpha - \beta)^3 (\alpha +\beta -5) (t_1^2 +4t_1t_2)}{\alpha^4\beta^3} - \displaystyle\frac{6 (1- \alpha - \beta)^3 (\alpha +\beta +3) \left(11 t_1^2-4 t_1 t_2+24 t_2^2\right)}{\alpha^5\beta^2}} \right) \\ & \left. { - 6 m_c^2 {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^2 \times \left(11 t_1^2-4 t_1 t_2+24 t_2^2\right) \times \left( { \displaystyle\frac{(1- \alpha - \beta)^3 (\alpha +\beta +3) }{\alpha^2\beta^4} + \displaystyle\frac{(1- \alpha - \beta)^3 (\alpha +\beta +3)}{\alpha^5\beta} } \right) } \right\}, \\ \rho^{\langle\bar qGq\rangle}_{3/2-, 1}(s) =& - \displaystyle\frac{m_c^2\langle\bar qg_s\sigma\cdot Gq\rangle}{8192\pi^6} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^2 } \right. \\ &\left. { \times \left( { \displaystyle\frac{(1- \alpha - \beta) \left(13 t_1^2-8 t_1 t_2-24 t_2^2\right)}{\alpha^2\beta^2} + \displaystyle\frac{2(1- \alpha - \beta)^2 t_1 t_2 }{\alpha^3\beta^2} } \right) } \right\}, \\ \rho^{\langle\bar qq\rangle^2}_{3/2-, 1}(s)=& \displaystyle\frac{m_c\langle\bar qq\rangle^2}{1536\pi^4} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^2 \times \displaystyle\frac{(\alpha +\beta ) \left(21 t_1^2-4 t_1t_2-48 t_2^2\right)}{\alpha^2\beta} } \right\}, \\ \rho^{\langle\bar qq\rangle\langle\bar qGq\rangle}_{3/2-, 1}(s)=& \displaystyle\frac{m_c\langle\bar qq\rangle\langle\bar qg_s\sigma\cdot Gq\rangle}{9216\pi^4} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]} } \right) \\ & \left. { \times\left( { \displaystyle\frac{3 \left(47 t_1^2 -12 t_1t_2 -96 t_2^2\right)}{\alpha} - \displaystyle\frac{2 (\alpha +\beta -2) \left(t_1^2+4t_1 t_2\right)}{\alpha\beta} + \displaystyle\frac{3 (\alpha +\beta ) \left(21 t_1^2-4 t_1 t_2-48 t_2^2\right)}{\alpha^2} } \right) } \right\} \\ & - \displaystyle\frac{m_c\langle\bar qq\rangle\langle\bar qg_s\sigma\cdot Gq\rangle}{3072\pi^4} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha \left\{ { {\left[m_c^2-\alpha(1-\alpha) s\right]} \times \displaystyle\frac{47 t_1^2-12t_1 t_2-96 t_2^2}{\alpha} } \right\} . \end{split} $
(13)
$ \begin{split} \rho_{3/2-, 2}(s) =& \rho^{\rm pert}_{3/2-, 2}(s) + \rho^{\langle\bar qq\rangle}_{3/2-, 2}(s) + \rho^{\langle GG\rangle}_{3/2-, 2}(s) + \rho^{\langle\bar qq\rangle^2}_{3/2-, 2}(s) + \rho^{\langle\bar qGq\rangle}_{3/2-, 2}(s) + \rho^{\langle\bar qq\rangle\langle\bar qGq\rangle}_{3/2-, 2}(s), \\ \rho^{\rm pert}_{3/2-, 2}(s) =& \displaystyle\frac{1}{3932160\pi^8}\int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^5 } \right. \\ & \left. { \times\left( { \displaystyle\frac{8 (1 - \alpha - \beta)^3 \left(11 t_1^2 -4 t_1 t_2 +24 t_2^2\right)}{\alpha^4\beta^4} -\displaystyle\frac{3 (1 - \alpha - \beta)^4 \left( 7 t_1^2 -4 t_1 t_2 +16 t_2^2 \right)}{\alpha^4\beta^4}} \right) } \right\}, \\ \rho^{\langle\bar qq\rangle}_{3/2-, 2}(s) =& \displaystyle\frac{mc \langle\bar qq\rangle}{12288 \pi^6} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^3 \times \displaystyle\frac{(1 -\alpha -\beta)^2 \left(21 t_1^2 -4 t_1 t_2 -48 t_2^2 \right)}{\alpha^2\beta^3} } \right\}, \\ \rho^{\langle GG\rangle}_{3/2-, 2}(s) =& - \displaystyle\frac{\langle GG\rangle}{28311552 \pi^8} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^3 \times \left( { \displaystyle\frac{144 (1 -\alpha -\beta) (\alpha +\beta +1) \left( t_1^2 + 4 t_1 t_2 \right) }{\alpha^2\beta^2} } \right. } \right. \\ &+ \displaystyle\frac{96 (1 -\alpha -\beta)^2 \left( 5 t_1^2 -4 t_1 t_2 +12 t_2^2\right)}{\alpha^2\beta^3} - \displaystyle\frac{108 (1 -\alpha -\beta)^2 \left( 7 t_1^2 -4 t_1 t_2 +16 t_2^2\right)}{\alpha^3\beta^2} + \displaystyle\frac{4 (1 -\alpha -\beta)^3 \left( 35 t_1^2 -52 t_1 t_2 +96 t_2^2\right)}{\alpha^2\beta^3} \\ &\left. { + \displaystyle\frac{4 (1 -\alpha -\beta)^3 \left( 61 t_1^2 -44 t_1 t_2 +144 t_2^2\right)}{\alpha^3\beta^2} + \displaystyle\frac{ (1 -\alpha -\beta)^3 (\alpha +\beta -5)\left( t_1^2 +4 t_1 t_2\right)}{\alpha^3\beta^2}} \right) \\ & -6 mc^2 {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^2 \times \left( { \displaystyle\frac{8 (1 -\alpha -\beta)^3 \left( 11 t_1^2 -4 t_1 t_2 +24 t_2^2\right)}{\alpha\beta^4} + \displaystyle\frac{8 (1 -\alpha -\beta)^3 \left( 11 t_1^2 -4 t_1 t_2 +24 t_2^2\right)}{\alpha^4\beta} } \right. \\ & \left. {\left. { - \displaystyle\frac{3 (1 -\alpha -\beta)^4 \left( 7 t_1^2 -4 t_1 t_2 +16 t_2^2\right)}{\alpha\beta^4} - \displaystyle\frac{3 (1 -\alpha -\beta)^4 \left( 7 t_1^2 -4 t_1 t_2 +16 t_2^2\right)}{\alpha^4\beta}} \right)} \right\}, \\ \rho^{\langle\bar qGq\rangle}_{3/2-, 2}(s) =& -\displaystyle\frac{mc \langle\bar qGq\rangle}{32768 \pi^6} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^2 } \right. \\ &\left. { \times\left( { \displaystyle\frac{8 (1 -\alpha -\beta) \left( 13 t_1^2 -4 t_1 t_2 -24 t_2^2\right)}{\alpha\beta^2} + \displaystyle\frac{(1 -\alpha -\beta)^2 \left(t_1^2 +4 t_1 t_2\right)}{\alpha^2\beta^2}} \right)} \right\}, \\ \rho^{\langle\bar qq\rangle^2}_{3/2-, 2}(s) =& \displaystyle\frac{\langle\bar qq\rangle^2}{1536 \pi^4} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^2 \times \left( { \displaystyle\frac{4 \left( 3 t_1^2 -2 t_1 t_2 -6 t_2^2\right)}{\alpha\beta} - \displaystyle\frac{(1 -\alpha -\beta) \left( 11 t_1^2 -4 t_1 t_2 -24 t_2^2\right)}{\alpha\beta} } \right)} \right\}, \\ \rho^{\langle\bar qq\rangle\langle\bar qGq\rangle}_{3/2-, 2}(s) =& \displaystyle\frac{\langle\bar qq\rangle\langle\bar qg_s\sigma\cdot Gq\rangle}{9216\pi^4} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]} \times \left( { 4 \left(18 t_1^2 -7 t_1t_2 -36 t_2^2 \right) + \displaystyle\frac{3 \left( 11 t_1^2 -4 t_1 t_2 -24 t_2^2\right)}{\alpha} } \right.} \right. \\ & \left. {\left. { - \displaystyle\frac{(3 t_1^2 -16t_1 t_2)}{\beta} - \displaystyle\frac{ (1 -\alpha -\beta)\left( 31 t_1^2 -12 t_1 t_2 -72 t_2^2\right)}{\alpha} - \displaystyle\frac{(1- \alpha -\beta ) \left(t_1^2 -8 t_1 t_2\right)}{\beta} } \right) } \right\} \\ & - \displaystyle\frac{\langle\bar qq\rangle\langle\bar qg_s\sigma\cdot Gq\rangle}{3072\pi^4} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha \left\{ { {\left[m_c^2-\alpha(1-\alpha) s\right]} \times \left( {25 t_1^2 -16t_1 t_2 -48 t_2^2} \right) } \right\} . \end{split} $
(14)
$ \begin{split} \quad\quad\rho_{5/2+, 1}(s) =& \rho^{\rm pert}_{5/2+, 1}(s) + \rho^{\langle\bar qq\rangle}_{5/2+, 1}(s) + \rho^{\langle GG\rangle}_{5/2+, 1}(s) + \rho^{\langle\bar qq\rangle^2}_{5/2+, 1}(s) + \rho^{\langle\bar qGq\rangle}_{5/2+, 1}(s) + \rho^{\langle\bar qq\rangle\langle\bar qGq\rangle}_{5/2+, 1}(s), \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \\ \rho^{\rm pert}_{5/2+, 1}(s) =& -\displaystyle\frac{m_c}{4915200\pi^8}\int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^5 \times \left(5 t_1^2 -4 t_1 t_2 +12 t_2^2\right) } \right. \\ & \left. { \times \left( { \displaystyle\frac{10 (1 - \alpha - \beta)^3 (\alpha +\beta +1) }{\alpha^5\beta^4} -\displaystyle\frac{(1 - \alpha - \beta)^4 (\alpha +\beta +4) }{\alpha^5\beta^4}} \right) } \right\}, \end{split} $
$ \begin{split} \rho^{\langle\bar qq\rangle}_{5/2+, 1}(s) =& \displaystyle\frac{mc^2 \langle\bar qq\rangle}{18432 \pi^6} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^3 \times \displaystyle\frac{(1 -\alpha -\beta)^2 (\alpha +\beta +2) \left(t_1 -2 t_1\right) \left(5 t_1 +6 t_2\right)}{\alpha^3\beta^3} } \right\}, \\ \rho^{\langle GG\rangle}_{5/2+, 1}(s) =& \displaystyle\frac{m_c \langle GG\rangle}{35389440 \pi^8} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^3 \times \left( { \displaystyle\frac{360 (1 -\alpha -\beta) \left(t_1^2 +2 t_2^2 \right) }{\alpha^3\beta^2} } \right.} \right. \\ & - \displaystyle\frac{120 (1 -\alpha -\beta)^2 \left( t_1^2 +4 t_1 t_2 \right)}{\alpha^3\beta^2} + \displaystyle\frac{90 (1 -\alpha -\beta)^2 \left( 3 t_1^2 -4 t_1 t_2 +8 t_2^2\right)}{\alpha^3\beta^3} - \displaystyle\frac{40 (1 -\alpha -\beta)^3 \left( t_1^2 -8 t_1 t_2 +6 t_2^2\right)}{\alpha^3\beta^2} \\ & - \displaystyle\frac{20 (1 -\alpha -\beta)^3 \left( t_1^2 -4 t_1 t_2 \right)}{\alpha^3\beta^3} - \displaystyle\frac{60 (1 -\alpha -\beta)^3 \left( 5 t_1^2 -4 t_1 t_2 +12 t_2^2\right )}{\alpha^5\beta^2} - \displaystyle\frac{5 (1 -\alpha -\beta)^4 \left( 7 t_1^2 -20 t_1 t_2 +24 t_2^2\right )}{\alpha^3\beta^3} \\ & \left. { + \displaystyle\frac{6 (1 -\alpha -\beta)^4 (\alpha +\beta +4) \left( 5 t_1^2 -4 t_1 t_2 +12 t_2^2\right )}{\alpha^5\beta^2}} \right) - 6 mc^2 {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^2 \times \left( 5 t_1^2 -4 t_1 t_2 +12 t_2^2 \right) \\ &\left. { \times \left( { \displaystyle\frac{10 (1 -\alpha -\beta)^3 }{\alpha^2\beta^4} + \displaystyle\frac{10 (1 -\alpha -\beta)^3 }{\alpha^5\beta} - \displaystyle\frac{ (1 -\alpha -\beta)^4 (\alpha +\beta +4) }{\alpha^2\beta^4} - \displaystyle\frac{ (1 -\alpha -\beta)^4 (\alpha +\beta +4) }{\alpha^5\beta}} \right)} \right\}, \\ \rho^{\langle\bar qGq\rangle}_{5/2+, 1}(s) =& -\displaystyle\frac{mc^2 \langle\bar qGq\rangle}{24576 \pi^6} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^2 \times \displaystyle\frac{(1 -\alpha -\beta) (\alpha +\beta +1) \left( t_1 -2 t_1 \right) \left( 17 t_1 +18 t_2 \right)}{\alpha^2\beta^2} } \right\}, \\ \rho^{\langle\bar qq\rangle^2}_{5/2+, 1}(s) =& -\displaystyle\frac{mc \langle\bar qq\rangle^2}{768 \pi^4} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^2 \times \displaystyle\frac{(\alpha +\beta) \left( 5 t_1^2 -4 t_1 t_2 -12 t_2^2 \right)}{\alpha^2\beta} } \right\}, \\ \rho^{\langle\bar qq\rangle\langle\bar qGq\rangle}_{5/2+, 1}(s) =& - \displaystyle\frac{m_c \langle\bar qq\rangle\langle\bar qg_s\sigma\cdot Gq\rangle}{4608\pi^4} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]} } \right. \\ & \left. { \times\left( { \displaystyle\frac{4 \left(t_1 -2 t_1\right) \left(8 t_1 +9 t_2\right)}{\alpha} - \displaystyle\frac{(\alpha +\beta ) \left(t_1^2 -8 t_1 t_2\right)}{\alpha\beta}} \right) } \right\} \\ & + \displaystyle\frac{m_c \langle\bar qq\rangle\langle\bar qg_s\sigma\cdot Gq\rangle}{1152\pi^4} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha \left\{ { {\left[m_c^2-\alpha(1-\alpha) s\right]} \times \displaystyle\frac{\left(t_1 -2 t_1\right) \left(8 t_1 +9 t_2\right)}{\alpha} } \right\} . \end{split} $
(15)
$ \begin{split} \quad\quad\quad\rho_{5/2+, 2}(s) = & \rho^{\rm pert}_{5/2+, 2}(s) + \rho^{\langle\bar qq\rangle}_{5/2+, 2}(s) + \rho^{\langle GG\rangle}_{5/2+, 2}(s) + \rho^{\langle\bar qq\rangle^2}_{5/2+, 2}(s) + \rho^{\langle\bar qGq\rangle}_{5/2+, 2}(s) + \rho^{\langle\bar qq\rangle\langle\bar qGq\rangle}_{5/2+, 2}(s),\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \\ \rho^{\rm pert}_{5/2+, 2}(s) =& -\displaystyle\frac{1}{4915200\pi^8}\int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^5 \times \left(5 t_1^2 -4 t_1 t_2 +12 t_2^2\right) } \right. \\ & \left. { \times\left( { \displaystyle\frac{10 (1 - \alpha - \beta)^3 }{\alpha^4\beta^4} -\displaystyle\frac{(1 - \alpha - \beta)^4 (\alpha +\beta +4) }{\alpha^4\beta^4}} \right) } \right\}, \\ \rho^{\langle\bar qq\rangle}_{5/2+, 2}(s) =& \displaystyle\frac{mc \langle\bar qq\rangle}{18432 \pi^6} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^3 \times \displaystyle\frac{(1 -\alpha -\beta)^2 (\alpha +\beta +2) \left(t_1 -2 t_1\right) \left(5 t_1 +6 t_2\right)}{\alpha^2\beta^3} } \right\}, \\ \rho^{\langle GG\rangle}_{5/2+, 2}(s) =& \displaystyle\frac{\langle GG\rangle}{35389440 \pi^8} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { 5 {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^3 \times \left( { \displaystyle\frac{72 (1 -\alpha -\beta) \left(t_1^2 +2 t_2^2 \right) }{\alpha^2\beta^2} } \right.} \right. \\ & - \displaystyle\frac{24 (1 -\alpha -\beta)^2 \left( t_1^2 +4 t_1 t_2 \right)}{\alpha^2\beta^2} + \displaystyle\frac{18 (1 -\alpha -\beta)^2 \left( 3 t_1^2 -4 t_1 t_2 +8 t_2^2\right)}{\alpha^2\beta^3} - \displaystyle\frac{8 (1 -\alpha -\beta)^3 \left( t_1^2 -8 t_1 t_2 +6 t_2^2\right)}{\alpha^2\beta^2} \\ &\left. { - \displaystyle\frac{4 (1 -\alpha -\beta)^3 \left( t_1^2 +4 t_1 t_2 \right)}{\alpha^2\beta^3} - \displaystyle\frac{ (1 -\alpha -\beta)^4 \left( 7 t_1^2 -20 t_1 t_2 +24 t_2^2 \right)}{\alpha^2\beta^3}} \right) \\ & - 6 mc^2 {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^2 \times \left( 5 t_1^2 -4 t_1 t_2 +12 t_2^2\right) \\ &\left. { \times \left( { \displaystyle\frac{10 (1 -\alpha -\beta)^3 }{\alpha\beta^4} + \displaystyle\frac{10 (1 -\alpha -\beta)^3}{\alpha^4\beta} - \displaystyle\frac{ (1 -\alpha -\beta)^4 (\alpha +\beta +4) }{\alpha\beta^4} - \displaystyle\frac{ (1 -\alpha -\beta)^4 (\alpha +\beta +4) }{\alpha^4\beta}} \right)} \right\}, \end{split} $
$ \begin{split} \rho^{\langle\bar qGq\rangle}_{5/2+, 2}(s) =& -\displaystyle\frac{mc \langle\bar qGq\rangle}{24576 \pi^6} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^2 \times \displaystyle\frac{(1 -\alpha -\beta) (\alpha +\beta +1) \left( t_1 -2 t_1 \right) \left( 17 t_1 +18 t_2 \right)}{\alpha\beta^2} } \right\}, \\ \rho^{\langle\bar qq\rangle^2}_{5/2+, 2}(s) =& -\displaystyle\frac{\langle\bar qq\rangle^2}{768 \pi^4} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]}^2 \times \displaystyle\frac{(\alpha +\beta) \left( 5 t_1^2 -4 t_1 t_2 -12 t_2^2 \right)}{\alpha\beta} } \right\}, \\ \rho^{\langle\bar qq\rangle\langle\bar qGq\rangle}_{5/2+, 2}(s) =& - \displaystyle\frac{\langle\bar qq\rangle\langle\bar qg_s\sigma\cdot Gq\rangle}{4608\pi^4} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha\int^{\beta_{\rm max}}_{\beta_{\rm min}}{\rm d}\beta \left\{ { {\left[(\alpha+\beta)m_c^2-\alpha\beta s\right]} \times \left( { 4 \left(t_1 -2 t_1\right) \left(8 t_1 +9 t_2\right) - \displaystyle\frac{(\alpha +\beta ) \left(t_1^2 -8 t_1 t_2\right)}{\beta}} \right) } \right\} \\ & + \displaystyle\frac{\langle\bar qq\rangle\langle\bar qg_s\sigma\cdot Gq\rangle}{1152\pi^4} \int^{\alpha_{\rm max}}_{\alpha_{\rm min}}{\rm d}\alpha \left\{ { {\left[m_c^2-\alpha(1-\alpha) s\right]} \times \left(t_1 -2 t_1\right) \left(8 t_1 +9 t_2\right)} \right\} . \end{split} $
(16)

3.Numerical analyses
In this section, we use the sum rules for $ J_{\mu, 3/2-} $ and $ J_{\mu\nu, 5/2+} $ to perform numerical analyses. The condensates in these equations take the following values [1, 69-76]:
$ \begin{split} \langle \bar qq \rangle =& - (0.24 \pm 0.01)^3 {\rm{ GeV}}^3, \\ \langle g_s^2GG\rangle =&(0.48 \pm 0.14) {\rm{ GeV}}^4, \\ \langle g_s \bar q \sigma G q \rangle =& M_0^2 \times \langle \bar qq \rangle, \\ M_0^2 =& - 0.8 {\rm{ GeV}}^2 . \end{split} $
(17)
We also need the charm and bottom quark masses, for which we use the running mass in the $ \overline{MS} $ scheme [1, 69-76]:
$ \begin{array}{l} m_c = 1.275 \pm 0.025 {\rm{ GeV}}, \\ m_b = 4.18^{+0.04}_{-0.03} {\rm{ GeV}} . \end{array} $
(18)
There are three free parameters in Eq. (12): the mixing angles $ \theta_{1/2} $, Borel mass $ M_B $, and threshold value $ s_0 $. After fine-tuning, we obtain the two mixing angles as $ \theta_1=-42^\circ $ and $ \theta_2=-45^\circ $. The following three criteria can be satisfied so that reliable sum rule results can be achieved:
1) The first criterion is used to ensure the convergence of the OPE series, i.e., we require the dimension eight to be less than 10%, which can be used to determine the lower limit of the Borel mass:
$ {\rm{CVG}} \equiv \left|\frac{ \Pi_{\langle \bar q q \rangle\langle g_s \bar q \sigma G q \rangle}(\infty, M_B) }{ \Pi(\infty, M_B) }\right| \leqslant 10\text{%} . $
(19)
2) The second criterion is used to ensure that the one-pole parametrization is valid, i.e., we require the PC to be greater than or equal to 30%, which can be used to determine the upper limit of the Borel mass:
$ {\rm{PC}}(s_0, M_B) \equiv \frac{ \Pi(s_0, M_B) }{ \Pi(\infty, M_B) } \gtrsim 30\text{%} . $
(20)
This criterion better ensures the one-pole parametrization than the criterion used in Refs. [57, 58] which only requires PC≥10%.
3) The third criterion is that the dependence of both $ s_0 $ and $ M_B $ dependence of the mass prediction be the weakest in order to obtain reliable mass predictions.
We use the sum rules (13) for the current $ J_{\mu, 3/2-} $ as an example. Firstly, we fix $ \theta_1=-42^\circ $ and $ s_0 = 23 $ GeV2, and show CVG as a function of $ M_B $ in the left panel of Fig. 1. We find that the OPE convergence improves with an increase in $ M_B $, and the first criterion requires that $ M_B^2 \geqslant 2.89 $ GeV2. We also show the relative contribution of each term in the middle panel of Fig. 1. We find that a good convergence can be achieved in the same region, $ M_B^2 \geqslant 2.89 $ GeV2. Next, we still fix $ \theta_1=-42^\circ $ and $ s_0 = 23 $ GeV2, and show PC is a function of $ M_B $ in the right panel of Fig. 1. We find that the PC decreases with an increase in $ M_B $, and PC = 32% when $ M_B^2 = 2.89 $ GeV2. Accordingly, we fix the Borel mass to $ M_B^2 = 2.89 $ GeV2 and choose 2.59 GeV2<$ M_B^2 $<3.19 GeV2 as our working region. We show variations of $ M_X $ with respect to $ M_B $ in the left panel of Fig. 2 and find that the mass curves are considerably stable around $ M_B^2 = 2.89 $ GeV2, as well as inside the Borel window 2.59 GeV2<$ M_B^2 $<3.19 GeV2.
Figure1. The left panel shows CVG, defined in Eq. (19), as a function of Borel mass ${ M_B }$. The middle panel shows the relative contribution of each term on the OPE expansion, as a function of Borel mass ${ M_B }$. Right panel shows the variation of PC, defined in Eq. (20), as a function of Borel mass ${ M_B }$. Here we use the current ${ J_{\mu,3/2-} }$ of ${ J^P = 3/2^- }$, and choose ${ \theta_1=-42^\circ }$ and ${ s_0 = 23 }$ GeV2.

Figure2. Variations of ${ M_{3/2^-} }$ with respect to Borel mass ${ M_B }$ (left), threshold value ${ s_0 }$ (middle), and mixing angle ${ \theta_1 }$ (right), calculated using the current ${ J_{\mu,3/2-} }$ of ${ J^P = 3/2^- }$. In the left panel, the long-dashed, solid, and short-dashed curves are obtained with ${ \theta_1=-42^\circ }$ and for ${ s_0 }$ = 21, 23, and 25 GeV2, respectively. In the middle figure, the curve is obtained with ${ \theta_1=-42^\circ }$ and ${ M_B^2 = 2.89 }$ GeV2. In the right figure, the curve is obtained for ${ s_0 = 23 }$ GeV2 and with ${ M_B }$ satisfying CVG=10%.

To use the third criterion to determine $ s_0 $, we show variations of $ M_X $ with respect to $ s_0 $ in the middle panel of Fig. 2, with $ \theta_1=-42^\circ $. The mass curves have a minimum against $ s_0 $ when $ s_0 $ is approximately 17 GeV2; therefore, the $ s_0 $ dependence of the mass prediction is the weakest at this point. However, the PC at this point is significantly small (only 8%). We find that the PC = 32% at $ s_0 = 23 $ GeV2. Moreover, the $ M_B $ dependence is the weakest at this point. Accordingly, we fix the threshold value to be $ s_0 = 23 $ GeV2 and choose 21 GeV2$ \leqslant s_0\leqslant $25 GeV2 as our working region.
Finally, we vary $ \theta_1 $ and repeat the above processes. We show variations of $ M_X $ with respect to $ \theta_1 $ in the right panel of Fig. 2 with $ s_0= 23 $ GeV2 and choosing $ M_B $ to satisfy CVG = 10%. We find that the $ \theta_1 $-dependence of the mass prediction is weak when $ \theta_1 \leqslant -40^\circ $. Accordingly, we fix the mixing angle $ \theta_1 $ to be $ -42^\circ $ and choose $ \theta_1 = -42\pm5^\circ $ as our working region.
For current $ J_{\mu, 3/2-} $, we fine-tune the mixing angle $ \theta_1 $ to be ?42°, and the working regions are found to be 21 GeV 2$ \leqslant s_0\leqslant $25 GeV2 and 2.59 GeV2<$ M_B^2 $<3.19 GeV2. We assume the uncertainty of $ \theta_1 $ to be ?42±5°, and we obtain the following numerical results:
$ \begin{split} M_{3/2^-} =& 4.40^{+0.17}_{-0.22} {\rm{ GeV}}, \\ f_{3/2^-} =& \left(6.5^{+3.2}_{-2.9}\right) \times 10^{-4} {\rm{ GeV}}^6, \end{split} $
(21)
where the central value corresponds to $ \theta_1 = -42^\circ $, $ s_0 = 23 $ GeV2, and $ M_B^2=2.89 $ GeV2. The mass uncertainty is due to the mixing angle $ \theta_1 $, Borel mass $ M_B $, threshold value $ s_0 $, charm quark mass $ m_c $, and various condensates [1, 69-76]. We note the following: a) when calculating the mass uncertainty due to the mixing angle $ \theta_1 $, we have fixed $ s_0 $ and $ M_B $; and b) when plotting the mass variation as a function of $ \theta_1 $, as shown in the right panel of Fig. 2, we have fixed $ s_0 $, but while choosing $ M_B $ to satisfy CVG = 10%. The above mass value is consistent with the experimental mass of the $ P_c(4380) $ [2], and supports it to be a hidden-charm pentaquark having $ J^P=3/2^- $. The current $ J_{\mu, 3/2-} $ consists of $ \xi_{36\mu} $ and $ \psi_{9\mu\nu} $, suggesting that the $ P_c(4380) $ may contain the S-wave $ [\Lambda_c(1P)\bar D_1] $, P-wave $ [\Lambda_c(1P)\bar D] $, P-wave $ [\Lambda_c\bar D_1] $, D-wave $ [\Lambda_c\bar D] $, S-wave $ [\Sigma_c \bar D^*] $ components, etc.
Similarly, we investigate the current $ J_{\mu\nu, 5/2+} $ of $ J^P = 5/2^+ $. We fine-tune the mixing angle $ \theta_2 $ to be -45±5°, and the working regions are found to be 21 GeV2$\leqslant s_0\leqslant $25 GeV2 and 2.31 GeV2<$ M_B^2 $<2.91 GeV2. We show the variations of $ M_X $ with respect to $ M_B $, $ s_0 $, and $ \theta_2 $ in Fig. 3, and we obtain the following numerical results:
Figure3. Variations of ${ M_{5/2^+} }$ with respect to the Borel mass ${ M_B }$ (left), threshold value ${ s_0 }$ (middle), and mixing angle ${ \theta_2 }$ (right), calculated using the current ${ J_{\mu\nu,5/2+} }$ of ${ J^P = 5/2^+ }$. In the left figure, the long-dashed, solid, and short-dashed curves are obtained with ${ \theta_2=-45^\circ }$ and for ${ s_0 }$=21, 23 and 25 GeV2, respectively. In the middle figure, the curve is obtained with ${ \theta_2=-45^\circ }$ and ${ M_B^2 = 2.61 }$ GeV2. In the right figure, the curve is obtained for ${ s_0 = 23 }$ GeV2 and with ${ M_B }$ satisfying CVG=10%.

$ \begin{split} M_{5/2^+} =& 4.50^{+0.26}_{-0.24} {\rm{ GeV}}, \\ f_{5/2^+} =& \left(5.5^{+3.4}_{-2.4}\right) \times 10^{-4} {\rm{ GeV}}^6, \end{split} $
(22)
where the central value corresponds to $ \theta_2=-45^\circ $, $ s_0 = 23 $ GeV2, and $ M_B^2=2.61 $ GeV2. The above mass value is consistent with the experimental mass of the $ P_c(4450) $ [2], and supports it to be a hidden-charm pentaquark having $ J^P=5/2^+ $. The current $ J_{\mu\nu, 5/2+} $ consists of $ \xi_{15\mu} $ and $ \psi_{4\mu\nu} $, suggesting that the $ P_c(4450) $ may contain the S-wave $ [\Lambda_c(1P)\bar D^*] $, P-wave $ [\Lambda_c\bar D^*] $, S-wave $ [\Sigma_c^* \bar D_1] $, P-wave $ [\Sigma_c^* \bar D] $ components, etc.
4.Other spin-parity assignments
In this section we follow the same approach to study the hidden-charm pentaquark states of $ J^P = 3/2^+ $ and $ J^P = 5/2^- $. We find the following two currents
$ \begin{split} J_{\mu, 3/2+} =& \cos\theta_3 \times \xi_{35\mu} + \sin\theta_3 \times \psi_{10\mu} \\ =& \cos\theta_3 \times [\epsilon^{abc} (u^T_a C \gamma_\nu \gamma_5 d_b) \gamma_\nu \gamma_5 c_c] [\bar c_d \gamma_\mu u_d] \\ & + \sin\theta_3 \times [\epsilon^{abc} (u^T_a C \gamma_\nu u_b) \gamma_\nu \gamma_5 c_c] [\bar c_d \gamma_\mu \gamma_5 d_d], \end{split} $
(23)
$ \begin{split} J_{\mu\nu, 5/2-} =& \cos\theta_4 \times \xi_{16\mu\nu} + \sin\theta_4 \times \psi_{3\mu\nu} \\ =& \cos\theta_4 \times [\epsilon^{abc} (u^T_a C \gamma_\mu \gamma_5 d_b) c_c] [\bar c_d \gamma_\nu \gamma_5 u_d] \\ & + \sin\theta_4 \times [\epsilon^{abc} (u^T_a C \gamma_\mu u_b) c_c] [\bar c_d \gamma_\nu d_d] \\ & + \{ \mu \leftrightarrow \nu \}, \end{split} $
(24)
which have structures similar to $ J_{\mu, 3/2-} $ and $ J_{\mu\nu, 5/2+} $, respectively. The extracted spectral densities are also similar to previous results:
$ \begin{split} \rho_{3/2+, 1}(s) =& \rho^{\rm pert}_{3/2-, 1}(s) - \rho^{\langle\bar qq\rangle}_{3/2-, 1}(s) + \rho^{\langle GG\rangle}_{3/2-, 1}(s) \\ &- \rho^{\langle\bar qq\rangle^2}_{3/2-, 1}(s) + \rho^{\langle\bar qGq\rangle}_{3/2-, 1}(s) + \rho^{\langle\bar qq\rangle\langle\bar qGq\rangle}_{3/2-, 1}(s), \end{split} $
(25)
$ \begin{split} \rho_{5/2-, 1}(s) =& \rho^{\rm pert}_{5/2+, 1}(s) - \rho^{\langle\bar qq\rangle}_{5/2+, 1}(s) + \rho^{\langle GG\rangle}_{5/2+, 1}(s) \\ & - \rho^{\langle\bar qq\rangle^2}_{5/2+, 1}(s) + \rho^{\langle\bar qGq\rangle}_{5/2+, 1}(s) + \rho^{\langle\bar qq\rangle\langle\bar qGq\rangle}_{5/2+, 1}(s), \end{split} $
(26)
where $ \rho^{\rm pert}_{3/2-, 1}(s) $, $ \rho^{\rm pert}_{5/2+, 1}(s) $, and others have been defined in Eqs. (13) and (15).
First, we study the current $ J_{\mu, 3/2+} $ of $ J^P = 3/2+ $. With the same mixing angle $ \theta_1 $, i.e., $ \theta_3 = \theta_1 = -42\pm5^\circ $, the working regions are found to be 21 GeV2$ \leqslant s_0\leqslant $25 GeV2 and 2.58 GeV2<$ M_B^2 $<3.18 GeV2. We show the variations of $ M_X $ with respect to $ s_0 $ in the left panel of Fig. 4 with $ \theta_3=-42^\circ $, where the mass is extracted to be
Figure4. Variations of ${ M_{3/2^+} }$ (left) and ${ M_{5/2^-} }$ (right) with respect to the threshold value ${ s_0 }$, calculated using the current ${ J_{\mu,3/2+} }$ with ${ \theta_3=-42^\circ }$ and ${ J_{\mu\nu,5/2-} }$ with ${ \theta_4=-45^\circ }$, respectively.

$ M_{3/2^+} = 4.40^{+0.14}_{-0.16} {\rm{ GeV}} . $
(27)
Then, we study the current $ J_{\mu\nu, 5/2-} $ of $ J^P = 5/2- $. With the same mixing angle $ \theta_2 $, i.e., $ \theta_4= \theta_2 = -45\pm5^\circ $, the working regions are found to be 21 GeV2$ \leqslant s_0\leqslant $25 GeV2 and 2.20 GeV2<$ M_B^2 $<2.80 GeV2. We show vthe ariations of $ M_X $ with respect to $ s_0 $ in the right panel of Fig. 4 with $ \theta_4=-45^\circ $, where the mass is extracted to be
$ M_{5/2^-} = 4.43^{+0.26}_{-0.28} {\rm{ GeV}} . $
(28)
The above two values are both consistent with the experimental masses of $ P_c(4380) $ and $ P_c(4450) $ [2], suggesting that their spin-parity assignments can be different from $ J^P=3/2^- $ and $ 5/2^+ $, and further theoretical and experimental efforts are required to clarify their properties.
5.Results and discussions
In this study, we used the method of QCD sum rules to study the hidden-charm pentaquark states $ P_c(4380) $ and $ P_c(4450) $. We achieved better QCD sum rule results by requiring the PC to be greater than or equal to 30% in order to ensure that the one-pole parametrization was valid; this criterion is stricter than the one used in our previous studies [57, 58]. We found two mixing currents, $ J_{\mu, 3/2-} $ of $ J^P = 3/2^- $ and $ J_{\mu\nu, 5/2+} $ of $ J^P = 5/2^+ $. We used them to perform the sum rule analyses, and the masses were extracted to be
$ \begin{split} M_{3/2^-} =& 4.40^{+0.17}_{-0.22} {\rm{ GeV}}, \\ M_{5/2^+} =& 4.50^{+0.26}_{-0.23} {\rm{ GeV}} . \end{split} $
These values are consistent with the experimental masses of $ P_c(4380) $ and $ P_c(4450) $, suggesting that they can be identified as hidden-charm pentaquark states composed of anti-charmed mesons and charmed baryons: $ P_c(4380) $ has $ J^P=3/2^- $ and may contain the S-wave $ [\Lambda_c(1P)\bar D_1] $, P-wave $ [\Lambda_c(1P)\bar D] $, P-wave $ [\Lambda_c\bar D_1] $, D-wave $ [\Lambda_c\bar D] $, S-wave $ [\Sigma_c \bar D^*] $ components, etc. $ P_c(4450) $ has $ J^P=5/2^+ $ and may contain the S-wave $ [\Lambda_c(1P)\bar D^*] $, P-wave $ [\Lambda_c\bar D^*] $, S-wave $ [\Sigma_c^* \bar D_1] $, P-wave $ [\Sigma_c^* \bar D] $ components, etc.
We follow the same approach to study the hidden-charm pentaquark states of $ J^P = 3/2^+ $ and $ J^P = 5/2^- $, and extract their masses to be
$ \begin{split} M_{3/2^+} =& 4.40^{+0.14}_{-0.16} {\rm{ GeV}}, \\ M_{5/2^-} =& 4.43^{+0.26}_{-0.28} {\rm{ GeV}} . \end{split} $
These values are also consistent with the experimental masses of $ P_c(4380) $ and $ P_c(4450) $ [2], suggesting that there still exist other possible spin-parity assignments, which should be clarified in further theoretical and experimental studies.
We have also investigated the bottom partners of $ P_c(4380) $ and $ P_c(4450) $, i.e., the hidden-bottom pentaquark states ($ b \bar b u u d $) of $ J^P = 3/2^- $ and $ J^P = 5/2^+ $. As shown in Fig. 5, their masses are extracted to be
Figure5. Variations of ${ M_{P_b(3/2^-)} }$ (left) and ${ M_{P_b(5/2^+)} }$ (right) with respect to the threshold value ${ s_0 }$, calculated using the current ${ J^{b \bar b u u d}_{\mu,3/2-} }$ with ${ \theta_1=-42^\circ }$ and ${ J^{b \bar b u u d}_{\mu\nu,5/2+} }$ with ${ \theta_2=-45^\circ }$, respectively.

$ \begin{split} M_{P_b(3/2^-)} =& 10.83^{+0.26}_{-0.29} {\rm{ GeV}}, \\ M_{P_b(5/2^+)} =& 10.85^{+0.24}_{-0.27} {\rm{ GeV}} . \end{split} $
(29)
We propose to search for them in the future LHCb and BelleII experiments.
In conclusion, we note that there are a considerable systematical uncertainties that are not considered in the present study, such as the vacuum saturation for higher dimensional operators, which is used to calculate the OPE . Moreover, in this study, we used the running charm and bottom quark masses in the $ \overline{MS} $ scheme, while sometimes their pole masses were used. Consider thee current $ J_{\mu, 3/2-} $ as an example: a) if we use $ \langle 0 | \bar q q \bar q q |0 \rangle = ( 0.8 \sim 1.2 ) \times$$ \langle 0 | \bar q q |0 \rangle \langle 0|\bar q q |0 \rangle $, we would obtain $ M_{3/2^-} $=4.34 GeV~4.48 GeV (other uncertainties are not included); b) if we use the pole charm mass $ m_c = 1.67 $ GeV [1], we would have to shift the mixing angle to be approximately $ \theta_1 = -38^\circ $ to arrive at the similar mass $ M_{3/2^-} = 4.38 $ GeV. Combining the previous uncertainties in Eqs. (21), (22), (27), and (28), we obtain the following result for the mixing current $ J_{\mu, 3/2-} $ of $ J^P = 3/2^- $
$ M_{3/2^-} = 4.40^{+0.19}_{-0.23} {\rm{ GeV}} . $
Similarly, we obtain the following results for the other three mixing currents, $ J_{\mu\nu, 5/2^+} $ of $ J^P = 5/2^+ $, $ J_{\mu, 3/2^+} $ of $ J^P = 3/2^+ $, and $ J_{\mu\nu, 5/2^-} $ of $ J^P = 5/2^- $:
$ \begin{split} M_{5/2^+} =& 4.50^{+0.28}_{-0.27} {\rm{ GeV}}, \\ M_{3/2^+} =& 4.40^{+0.16}_{-0.17} {\rm{ GeV}}, \\ M_{5/2^-} = &4.43^{+0.27}_{-0.29} {\rm{ GeV}} . \end{split} $
The above (systematical) uncertainties are significant, suggesting that we still know little about exotic hadrons, and further experimental and theoretical studies are necessary to understand them well.
We thank Professor Nikolai Kochelev for helpful discussions.
相关话题/Revisiting hiddencharm pentaquarks

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
濠电偞鍨堕幐鎾磻閹剧粯鐓涘鑸得悘鐘绘煏閸繄鍩i柟宕囧█瀹曟粍鎷呴崷顓熸闂傚倷娴囧Λ鍕暦椤掆偓椤繈濡搁埡浣虹厬濡炪倖鐗楅悷銈囪姳閺夊簱妲堥柡鍐e亾婵犮垺锕㈠畷鍝勭暆閸曨剙娈岄梺鍛婂姦娴滅偤宕洪垾鏂ユ闁规儳鐡ㄧ亸顐ょ磼濡ゅ啫鏋旈柟椋庡█楠炴垿骞囬鍝勪航闂備礁鎼崐褰掓偡鏉堚晜顫曢柨鐕傛嫹
2濠电偞鍨堕幐绋棵洪妸鈺嬬稏闁圭儤顨嗛崵鈧梺鍛婂姦娴滅偤宕洪敓鐘崇厽闁靛繈鍊栧☉褔鏌i埄鍐噭缂佸锕弫鍌炴嚃閳哄喚妲卞┑鈽嗗亞婢ф鏁嬬紓浣靛姂娴滆埖淇婄€涙ɑ濯寸紒娑橆儐缂嶅﹥淇婇銈咁暭闁割煈鍨堕崺鈧い鎴f硶椤︼箓鏌涘▎蹇曠缂侀缚妫勮灃闁告洦鍘归崑鎺楁⒑閸濆嫬鈧綊鎮锋潏鈺傤潟婵ǹ娉涢惌妤€鈹戦悩鎻掆偓鎼佸锤婵犲喚娈介柣鎰▕閸ょ喐绻濋埀顒勫焺閸愯法鐭楀┑顔筋殔閻楀繒绮堟径瀣闁瑰濮甸弳鈺傜箾鐠囇勫547闂備礁婀遍。浠嬪磻閹剧粯鈷掗柛鏇楁櫅閻忣亪鏌eΔ瀣4濠电偞鍨堕幐绋棵洪敐鍥╃闁瑰鍋熼埢鏃€銇勮箛鎾寸闁稿鎹囧畷姗€顢旈崱妤冨幐闂備礁鍚嬪姗€宕銏㈡殾闁靛濡囬埢鏃堟煙閹规劕鐨洪柣鐔锋贡缁辨帗寰勭€n亞浠煎┑鐐跺紦閸楄櫕淇婄€涙ɑ濯撮悷娆欑到娴滈箖鏌涢幇鍏哥敖闁糕晪绻濋弻娑滅疀閿濆懎顫╅梺鍛婄懕缁辨洟骞忛悩璇茬闁告侗鍨抽ˇ鈺呮⒑鐞涒€充壕闂佸湱枪缁ㄨ偐绮径鎰厾闁哄嫬绻掔花鎸庛亜閺囨ê鐏茬€殿噮鍋婂璺衡枎閹兾ら梻浣瑰缁嬫垿藝椤撱垹鐒垫い鎺戯攻鐎氾拷40缂傚倷绀侀ˇ顖滅矓瀹曞洨绠旈柟鎯ь嚟閳绘梹鎱ㄥ鈧涵鎼佸极鐎n亶鐔嗛悹鍥b偓鍏呭缂備浇椴搁悷鈺呭蓟瀹€鍕闁挎繂娲犻崑鎾绘惞鐟欏嫬鍘归梺鍝勬川閸庢垹妲愬⿰鍫熺厪闁糕剝娲栫花绫匒闂備線娼уΛ鏃傜矆娴h鐟拔旈崨顔规寖闂佸憡渚楅崢钘夆枍瀹€鍕厱闁哄啯鎸剧壕鎸庛亜閵忥紕顣茬紒鏃傚枛椤㈡洟鎮╅顫婵炶揪缍€椤鎮¢埀顒勬⒒閸屾艾鈧粙顢欐繝鍕潟闁割偅娲栫粻缁樸亜閹捐泛顎岄柡浣割儏椤法鎷犻垾鍏呯按闂侀€炲苯鍘搁柤鍐茬埣婵$敻鎮欓弶鎴殼濠殿喗锕╅崗娑氭閿濆悿褰掓晲閸℃瑧鐓傚銈冨灪绾板秶绮╅悢纰辨晝闁靛牆娲﹂幆锝夋⒑閹稿海鈽夋い锔诲弮閸┾偓妞ゆ帒锕ョ€氾拷28缂傚倷绶¢崑澶愵敋瑜旈獮鍐箻閸撲線鈹忔繝銏f硾楗挳宕濋崨瀛樼厱闁哄啠鍋撶紒瀣崌瀵偊鎮介崹顐㈠幑闂佸搫娲﹀銊╂偡閳轰讲妲堥柟鐐綑閹兼悂鏌嶈閸撱劑骞忛敓锟�1130缂傚倷绀侀ˇ顖滅矓閸撲礁鍨濋柨鐔哄Т缁€鍌炴煕濞戞﹫鏀绘繛鍫濈焸閺屸剝寰勭€n亜顫囬梺閫炲苯澧鹃柟鍑ゆ嫹