Coupling analysis between ridge direction and gully erosion of sloping cultivated lands in the Sancha River watershed
GUANCong1,2,3,, ZHANGShuwen2,, WANGRanghu4, YANGJiuchun2, YUEShuping5, YULingxue2, WANGWenjuan6 1. Collage of Earth Science, Jilin Uiversity, Changchun 130061, China2. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China3. Changchun Institute of Technology, Changchun 130012, China4. Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China5. School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China6. College of Resources and Environmental Sciences, Henan University of Economics and Law, Zhengzhou 450046, China 通讯作者:通讯作者: 张树文,E-mail: zhangshuwen@neigae.ac.cn 收稿日期:2018-06-26 修回日期:2018-12-3 网络出版日期:2019-02-25 版权声明:2019《资源科学》编辑部《资源科学》编辑部 基金资助:国家重点研发计划重点专项课题(2017YFC0504202)国家自然科学基金项目(41801350;41601458)资源与环境信息系统国家重点实验室开放基金项目 作者简介: -->作者简介: 贯丛,女,吉林长春人,博士生,研究方向为土地利用/覆被变化监测。E-mail: luccer@126.com
关键词:地理国情普查;坡耕地;垄向;侵蚀沟;耦合分析;东北典型黑土区;三岔河流域 Abstract The initiation and development of gully erosion in the sloping farmland of black soil area are closely related to the tillage measures. Taking the Sancha River watershed in typical black soil area of Northeast China as the study area, this study used the high precision basic data provided by the geographical conditions information census to obtain the ridge direction of cultivated land and gully erosion data. The relationship between the gully density and intensity and the ridge direction angle in the cultivated land was quantitatively analyzed. Then we studied the coupling effect of the gully erosion in different ridge directions and topography. The results showed that: (1) There was an obvious trend of horizontal ridge tillage of sloping farmland; (2) The gully intensity of cultivated land was moderate in the study area; (3) The ridge angle of cultivated land was significantly negatively correlated with the gully erosion density and intensity. With the increase of the angle between contour line and ridge direction, the average gully density and intensity in sloping farmlands gradually decreased. The gully density and intensity in the horizontal ridge tillage were the largest. The linear fitting effect of ridge angle and gully density was the best, and the gully intensity was slightly worse; (4) The distribution of gullies in different ridge directions has obvious topographic differentiation characteristics. In the cultivated land where the elevation was more than 280 m, all ridge tillage cannot effectively resist the gully erosion; when slope gradient was greater than 15°, the gully intensity of cultivated land with contour ridge was the least, however, it was still higher than the gully intensity of cultivated land with every ridges on gentle slope; there was no significant difference in the effect of ridge directions on the area of the gullies on the shady slope.
Keywords:geographical conditions information census;sloping cultivated lands;ridge direction;erosion gully;coupling analysis;typical black soil area in Northeast China;Sancha River watershed -->0 PDF (8265KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 贯丛, 张树文, 王让虎, 杨久春, 岳书平, 于灵雪, 王文娟. 三岔河流域坡耕地垄向与侵蚀沟分布耦合分析[J]. 资源科学, 2019, 41(2): 394-404 https://doi.org/10.18402/resci.2019.02.17 GUANCong, ZHANGShuwen, WANGRanghu, YANGJiuchun, YUEShuping, YULingxue, WANGWenjuan. Coupling analysis between ridge direction and gully erosion of sloping cultivated lands in the Sancha River watershed[J]. RESOURCES SCIENCE, 2019, 41(2): 394-404 https://doi.org/10.18402/resci.2019.02.17
吉林省九台区位于东北典型黑土区的南部 (图1),地理坐标为东经125°24′50″E—126°29′50″E,43°50′30″N—44°31′30″N,地形呈西南东北狭长形状,地势由西南向东倾斜,从冲积平原二级阶地(台地)过渡到低山丘陵(半山区)。全区河流水系发达,形成了广阔的冲积平原,而山岭均为长白山系哈达岭山脉的余脉,地表结构大体上是“三山、一水、六分田”。黑土类是九台区主要耕种土壤,包括黑土和草甸土两个亚类,分布最广、面积最大,质地较为粘重,多为壤土到粘壤土,机械组成以粗粉砂和粘粒为主,有机质含量相当丰富,土壤团粒结构较好。该地区四季分明,盛行西南风向,年平均气温和年降水量分别为5.3℃和568 mm,属于中温带大陆季风性气候。 显示原图|下载原图ZIP|生成PPT 图1三岔河流域位置 -->Figure 1Location of the Sancha River watershed -->
(1) 耕地垄向参数提取及计算。本研究利用Pleiades影像对田块的垄向进行解译,在已有的地表覆盖数据中分割出垄向一致的旱地地块,将垄向赋予田块。利用DEM生成研究区的坡向栅格图层,然后利用ArcGIS的栅格计算器计算垄向与坡向之间的夹角。因为坡向和等高线之间互相垂直,所以可通过求余角的方式换算成垄向与等高线的夹角,即垄向角[26]。 (2) 侵蚀沟数据提取及计算。本研究基于2013年Pleiades-1A影像,采用目视解译结合野外验证的方式对研究区耕地中的侵蚀沟(包括浅沟和切沟,如图2所示)进行提取,获得侵蚀沟在耕地中的矢量分布数据,包括线状和面状数据。本研究采用沟蚀密度和沟蚀裂度指标来评估沟蚀分布状况。沟蚀密度是指单位面积内的侵蚀沟总长度,采用ArcGIS的线密度工具进行密度插值;沟蚀裂度是指单位面积内的侵蚀沟总面积,采用ArcGIS的焦点统计工具来获取,具体做法可参照已有研究[27]。沟蚀密度和沟蚀裂度是反映土地破碎程度和沟蚀剧烈程度的关键宏观指标。在沟蚀密度相同的情况下,沟蚀裂度越大,表示单位面积的侵蚀沟面积越大,往往意味着沟蚀中的侧蚀作用更为严重,导致两侧沟壁不断后退,面积增加[27]。 显示原图|下载原图ZIP|生成PPT 图2三岔河流域坡耕地中的浅沟和切沟 -->Figure 2The ephemeral gullies and small permanent gullies in the sloping cultivated lands in the Sancha River watershed -->
3.1.1 耕地垄向的分布特征 本文将垄向角分为0~10°,10~20°,20~30°,30~40°,40~50°,50~60°,60~70°,70~80°,80~90°共9个级别进行统计(按10°间隔分隔)(图3)。由图3可以明显看出,随着垄向角的增大,坡耕地所占比例逐渐减小,由垄向角0~10°占坡耕地的19.5%,下降到垄向角80~90°占坡耕地的7.0%,减少了将近64.1%,这表明研究区横坡耕作的趋势非常明显,这与研究区早年采取“横山打垅”[29]的措施有关。 显示原图|下载原图ZIP|生成PPT 图3三岔河流域坡耕地的垄向角分布 -->Figure 3The distribution of ridge angles in the sloping cultivated lands in the Sancha River watershed -->
3.1.2 侵蚀沟的空间分布特征 统计结果表明,研究区2013年的耕地面积为98.60 km2,而耕地中的侵蚀沟数量为1175条,总长度为151.51 km,总面积为417 000 m2,沟蚀密度为1.54 km/km2,沟蚀裂度为4230 m2/km2。依据水利部《黑土区水土流失综合防治技术标准》(SL446—2009)[30],研究区的沟蚀强度为中度侵蚀。从沟蚀密度空间分布图(图4a)可以明显看出,流域内侵蚀沟分布广泛,均存在不同程度的沟蚀情况。但沟蚀密度和沟蚀裂度的分布特征存在较大的差异,这是由于不同类型侵蚀沟对两个指标计算的贡献程度不同,例如图2中两种类型侵蚀沟,相同的沟长对沟蚀密度指标计算的贡献是一样的,但面积更大的切沟对沟蚀裂度指标计算的贡献要比浅沟大很多。因此,流域东北部以宽、深的切沟为主,是侵蚀最为剧烈的地方(图4b)。 显示原图|下载原图ZIP|生成PPT 图4三岔河流域沟蚀密度和裂度空间分布 -->Figure 4The distribution of gully density and intensity in the Sancha River watershed -->
3.2.1 不同垄向角对沟蚀分布的影响 研究结果表明,随着垄向角的增大,沟蚀密度和沟蚀裂度均呈线性下降趋势,即坡耕地的垄向角愈小,沟蚀愈强烈(图5)。其中,垄向角与平均沟蚀密度的线性拟合效果最好,拟合方程为y=1.83-0.01x,决定系数R2=0.95。而垄向角与平均沟蚀裂度的线性拟合方程为y=8078.16-25.19x,决定系数R2=0.77,拟合效果相对稍差。以上统计结果,均通过了0.05显著性水平检验。但该结果并不能直接表征垄向角与坡面侵蚀量(水土流失量)之间的相关程度。 显示原图|下载原图ZIP|生成PPT 图5三岔河流域垄向角与沟蚀密度和裂度的拟合曲线 -->Figure 5The fitting curve of ridge angle with gully density and intensity in the Sancha River watershed -->
为了方便与已有研究进行对比,本文将垄向角按照横坡垄(0~10°)、斜坡垄(10~80°)及顺坡垄(80~90°)进一步统计分析。结果表明,研究区横坡垄中的侵蚀沟密度和裂度都是最大的,从横坡垄的平均沟蚀密度1.76 km/km2和平均沟蚀裂度7628 m2/km2分别减少到顺坡垄的1.06 km/km2和5982 m2/km2,下降幅度达到40%和22%。斜坡垄整体的平均沟蚀密度和沟蚀裂度为1.43 km/km2和7119 m2/km2,均介于横坡垄和顺坡垄之间(图6)。这是由于:虽然顺坡垄作增加了坡面径流量和侵蚀量[17],但严重侵蚀部位主要发生在顺坡垄的坡脚处,并不破坏垄台[20],坡面侵蚀方式以细沟侵蚀为主[17],所以顺坡垄的沟蚀(浅沟和切沟)密度和裂度最小;而虽然横坡垄作在断垄前具有较好的防蚀效应,但由于研究区属于漫川漫岗地形,地势波状起伏,微地貌的存在会使得垄向偏离等高线,横坡垄并不是真正的等高垄,每条横垄沟中高低不平,再加上东北黑土区机械犁耕下垄丘的土壤稳定性相对较差[18],在短历时暴雨的情况下,横坡垄的坡耕地中产生的超渗径流会沿垄沟汇集,在脆弱的垄段和不水平的低洼处冲开垄体造成断垄,形成集中股流,其产生的巨大径流剪切力超过了土壤的抗蚀性从而造成沟蚀,即沟渠效应[21]。横坡垄出现断垄主要受到降雨强度、雨型、坡度以及垄丘稳定性等因素的影响[18]。Xu等在黑土区进行的模拟降雨试验表明,横坡垄作在≤50 mm/h的降雨强度下能够有效防蚀,但遇到强降雨容易发生断垄[19]。根据长春地区历史资料统计(1953—2012年),7—8月的累积降雨量占年降雨量的61.5%,短历时(60 min)年最大降雨量可达5~72 mm[31]。试验数据表明,在75 mm/h的降雨强度下,横坡垄作断垄后的径流强度最大峰值超过200 mm/h,而顺坡垄作稳定阶段的径流强度为60 mm/h[19]。短历时高强度的暴雨导致横坡垄断垄后的汇流作用所形成的集中股流远远超过了顺坡垄,所以研究区横坡垄的沟蚀反而最为强烈。 显示原图|下载原图ZIP|生成PPT 图6三岔河流域不同垄向耕地的沟蚀密度和裂度分布 -->Figure 6The distribution of gully density and intensity in cultivated land with different ridge directions in the Sancha River watershed -->
3.2.2 不同高程上耕地垄向对沟蚀分布的影响 整体上看(图7),各耕地垄向中的沟蚀密度和裂度随高程的增加呈现先增加后减少的趋势。对于沟蚀密度,不论高程如何均呈现出横坡垄>斜坡垄>顺坡垄,其中280 m以下各垄向耕地的沟蚀密度变化不大,当高程大于280 m时各垄向耕地的沟蚀密度突然开始增加,在320~340 m达到最大值。对于沟蚀裂度,280 m以下各垄向耕地的沟蚀裂度之间差距不明显,均呈现先增加后减少的趋势。但当高程大于280 m时,各垄向耕地的沟蚀裂度变化趋势出现转折,横坡垄的沟蚀裂度开始波动增加,而斜坡垄和顺坡垄的沟蚀裂度逐渐增加,在300~320 m处达到峰值,其中斜坡垄的沟蚀裂度最大。综上,当海拔小于280 m时,各垄向耕地的沟蚀裂度(沟面积)差异不大,而沟蚀密度(沟长)之间存在较大差异,所以不同垄向耕作对沟蚀的影响主要体现在沟长;当海拔大于280 m时,不同垄向耕地中的沟蚀密度和裂度都开始突然增加,这是由于随着海拔升高,耕地的平均坡度开始增加(表1),耕地在280~300 m的平均坡度就达到了7.5°,土壤颗粒的剪切力增加[32],土壤侵蚀强度加大,同时,沟头的溯源侵蚀作用更加明显,所以各垄向耕作均不能有效地抵御侵蚀沟的产生,应实行退耕还林还草,加强沟蚀防治。 显示原图|下载原图ZIP|生成PPT 图7三岔河流域不同垄向耕地沟蚀密度和裂度的高程分异特征 -->Figure 7Elevation differentiation of gully density and intensity in cultivated land with different ridge directions in the Sancha River watershed -->
Table 1 表1 表1三岔河流域不同高程级别耕地的平均坡度 Table 1Average slope of cultivated land at different elevation levels in the Sancha River watershed
海拔/m
<200
200~220
220~240
240~260
260~280
280~300
300~320
320~340
340~360
>360
平均坡度/°
1.0
3.3
4.7
5.5
6.4
7.5
8.5
9.9
10.3
9.7
新窗口打开 3.2.3 不同坡度上耕地垄向对沟蚀分布的影响 由于研究区25°以上的耕地面积数量比较少(仅占总面积的0.14%),而且非常不适宜耕种,故此处不做讨论。通过地面坡度与沟蚀密度和沟蚀裂度的耦合分析可知,各耕地垄向中的沟蚀密度和沟蚀裂度整体呈现先增大后减小的趋势(图8)。这是由于随着坡度的增大,土壤颗粒的剪切力也随之增加[32],土壤稳定性降低,由重力引起的土壤侵蚀会增多,土壤侵蚀强度相应增加。但随着坡度的进一步加大,林地所占的比例也越来越大,在10~15°时会超过50%(图9)。林地能够对降雨有效截流,减少水土流失,再加上上游的汇水面积减少,黑土较好的渗水性和透水性,侵蚀沟的发育受到限制[33]。对于沟蚀密度,当坡度小于12°时,横坡垄>斜坡垄>顺坡垄,这是由于“沟渠效应”的存在,使得横坡垄作在短历时暴雨的情况下断垄后形成的集中股流远远超过了顺坡垄,所以横坡垄中的沟蚀密度最大,顺坡垄最小;当坡度大于12°时,各垄向耕地的侵蚀沟密度无明显差别。对于沟蚀裂度,当坡度小于15°时,各垄向耕地的沟蚀裂度差别不大,其中顺坡垄略小;当坡度大于15°且小于23°时,顺坡垄>斜坡垄>横坡垄,这可能是由于当坡度过大时,上游的汇水少,横坡垄能够阻挡降雨汇水向下流动,减缓汇流对土壤的侵蚀,而顺坡垄和斜坡垄则作用相反。但由于坡度增加导致土壤稳定性降低,重力引发的沟壁坍塌等现象增多,所以横坡垄中的沟蚀裂度仍然要高于缓坡(<5°)各垄向耕地的沟蚀裂度。因此,应停止陡坡地的开垦,减少沟蚀的产生。 显示原图|下载原图ZIP|生成PPT 图8三岔河流域不同垄向耕地沟蚀密度和裂度的坡度分异特征 -->Figure 8Slope gradient differentiation of gully density and intensity in cultivated land with different ridge directions in the Sancha River watershed -->
显示原图|下载原图ZIP|生成PPT 图9三岔河流域各坡度等级上的土地利用类型统计 -->Figure 9Statistics of land use types in different slope grades in the Sancha River watershed -->
显示原图|下载原图ZIP|生成PPT 图10三岔河流域不同垄向耕地沟蚀密度和裂度的坡向分异特征 -->Figure 10Slope aspect differentiation of gully density and intensity in cultivated land with different ridge directions in the Sancha River watershed -->
[SongY, Zhang ZX.The effect of different tillage measures on soil erosion in slope farmland in black soil region [J]. , 2011, 18(2): 14-16. ] [本文引用: 1]
[37]
Peter KD, D’Oleire-Oltmanns S, Ries J B, et al. Soil erosion in gully catchments affected by land-levelling measures in the Souss Basin, Morocco, analysed by rainfall simulation and UAV remote sensing data [J]. , 2014, 113(2): 24-40. [本文引用: 1]
[38]
StöckerC, EltnerA, KarraschP.Measuring gullies by synergetic application of UAV and close range photogrammetry: A case study from Andalusia, Spain [J]. , 2015, 132: 1-11. [本文引用: 1]
[39]
KaiserA, NeugirgF, RockG, et al. Small-scale surface reconstruction and volume calculation, of soil erosion in complex Moroccan gully morphology using structure from motion [J]. , 2014, 6(8): 7050-7080. [本文引用: 1]
[Liu BY, Yan BX, ShenB, et al. Current status and comprehensive control strategies of soil erosion for cultivated land in the Northeastern black soil area of China [J]. , 2008, 6(1): 1-8. ] [本文引用: 1]
[Fan HM, Gu GH, Wang YS, et al. Characteristics of eroded gully development and environment of black soil region in Northeast China [J]. , 2013, (10): 75-78. ] [本文引用: 3]
[4]
DabaS, RiegerW, StraussP.Assessment of gully erosion in eastern Ethiopia using photogrammetric techniques [J]. , 2003, 50(2): 273-291. [本文引用: 1]
[5]
PoesenJ, NachtergaeleJ, VerstraetenG, et al. Gully erosion and environmental change: Importance and research needs [J]. , 2003, 50(2): 91-133. [本文引用: 1]
[Yan YC, Zhang SW, Yue SP.Application of corona and spot imagery on erosion gully research in typical black soil regions of Northeast China [J]. , 2006, 28(6): 154-160. ] [本文引用: 1]
[7]
WangR, ZhangS, PuL, et al. Gully erosion mapping and monitoring at multiple scales based on multi-source remote sensing data of the Sancha River Catchment, Northeast China [J]. , 2016, DOI: 10.3390/ijgi5110200. [本文引用: 1]
[HuG, Wu YQ, Liu BY, et al. Geomorphic threshold model for ephemeral gully incision in rolling hills with black soil in Northeast China [J]. , 2006, 26(4): 449-454. ] [本文引用: 1]
[10]
YangJ, ZhangS, ChangL, et al. Gully erosion regionalization of black soil area in Northeastern China [J]. , 2017, 27(1): 78-87. [本文引用: 1]
[Wang WJ, Deng RX, Zhang SW.Spatial pattern change and topographic differentia of gully erosion in the type black soil area of northeast China during the past 40 years [J]. , 2012, 28(3): 68-71. ] [本文引用: 1]
[LiF, Zhang SW, Li TQ.The spatial distribution relations between erosion gully and terrain factors in the south of typical black soil zone in Northeast China [J]. , 2012, 1(3): 148-154. ] [本文引用: 1]
[Wang WJ, Deng RX, Zhang SW.Effect of land use change on gully erosion in Nemoer river basin of typical black soil region of Northeast China [J]. , 2016, 31(5): 833-844. ] [本文引用: 1]
[LiH, Zhang XY, LiuS, et al. Evolvement of gully erosion in village scale in the typical black soil area [J]. , 2012, 10(2): 21-28. ] [本文引用: 1]
[15]
Álvarez-mozosJ, CampoMÁ, GiménezR, et al. Implications of scale, slope, tillage operation and direction in the estimation of surface depression storage [J]. , 2011, 111(2): 142-153. [本文引用: 1]
[16]
TakkenI, JettenV, GoversG, et al. The effect of tillage-induced roughness on runoff and erosion patterns [J]. , 2001, 37(1): 1-14. [本文引用: 2]
[BianF, Zheng FL, Xu XM, et al. Comparison of soil erosion process between longitudinal ridge slope and non-ridge slope in Mollisol Region of Northeast China [J]. , 2016, 36(1): 11-16. ] [本文引用: 3]
[WangL, HeC, Zheng FL, et al. Soil-bin experiment on effects of contour ridge tillage for controlling hillslope soil erosion in black soil region [J]. , 2018, 34(15): 141-148. ] [本文引用: 4]
[19]
Xu XM, Zheng FL, Wilson GV, et al. Comparison of runoff and soil loss in different tillage systems in the Mollisol region of Northeast China [J]. , 2018, 177: 1-11. [本文引用: 5]
[NingJ, YangZ, JiangT, et al. The coupling laws between gully erosion of cultivated lands with different ridge directions and terrain in Northeast Black Soil Region of China [J]. , 2016, 23(3): 29-36. ] [本文引用: 3]
[24]
Fu BJ, Zhao WW, Chen LD, et al. Assessment of soil erosion at large watershed scale using RUSLE and GIS: A case study in the Loess Plateau of China [J]. , 2005, 16(1): 73-85. [本文引用: 1]
[25]
ZhangJ, LiW, ZhaiL.Understanding geographical conditions monitoring: A perspective from China [J]. , 2015, 8(1): 38-57. [本文引用: 1]
[Zhao YM, Liu BY, Jiang HT.Distribution of tillage-induced direction and its effect on soil erosion in Black Soil Area of Northeast China [J]. , 2012, 19(5): 1-6. ] [本文引用: 1]
[Wang RH.Gully Erosion Monitoring at Multiple Scales Based on Multi-Source Remote Sensing Data of the Typical Black Soil Area, Northeast China [D]. , 2017. ] [本文引用: 2]
[LiJ, Liu ZS, Xue XQ, et al. Study of rainfall characteristics and pattern in Changchun City [J]. , 2015, 31(5): 100-104. ] [本文引用: 1]
[32]
RanziR, Le TH, Rulli MC.A RUSLE approach to model suspended sediment load in the lo river (Vietnam): Effects of reservoirs and land use changes [J]. , 2012, 422(5): 17-29. [本文引用: 2]
[Yan YC, Zhang SW, Li XY, et al. Temporal and spatial variation of erosion gullies in Kebai black soil region of Heilongjiang during the past 50 years [J]. , 2005, 60(6): 1015-1020. ] [本文引用: 1]
[Zhang JL, Zhou LL, Ma RM, et al. Runoff and sediment yield process on longitudinal and cross ridge slopes under natural rainfall [J]. , 2017, 31(5): 114-119. ] [本文引用: 1]
[40]
Gudino-ElizondoN, BiggsT, CastilloC, et al. Measuring ephemeral gully erosion rates and topographical thresholds in an urban watershed using unmanned aerial systems and structure from motion photogrammetric techniques [J]. , 2018, 29(6): 1896-1905. [本文引用: 1]